⚡️ Бесплатный вебинар — ИИ-агенты: новая фаза развития AI
24 сентября в 19:00 МСК состоится бесплатный вебинар с Максимом Шаланкиным — Data Science Team Lead в финтех-команде MWS, а познакомиться с ним ближе можно в его тг-канале.
Тема:
На вебинаре разберёмся, почему агенты — это следующий шаг после ChatGPT, чем они отличаются от обычных моделей и как уже приносят бизнесу ROI до 80%. А дальше я покажу, как эта тема ложится в наш курс по ИИ-агентам, который разработан под руководством Никиты Зелинского.
Подробности рассказываем в гс выше — включай, чтобы не пропустить.
24 сентября в 19:00 МСК состоится бесплатный вебинар с Максимом Шаланкиным — Data Science Team Lead в финтех-команде MWS, а познакомиться с ним ближе можно в его тг-канале.
Тема:
«ИИ-агенты: новая фаза развития искусственного интеллекта».
На вебинаре разберёмся, почему агенты — это следующий шаг после ChatGPT, чем они отличаются от обычных моделей и как уже приносят бизнесу ROI до 80%. А дальше я покажу, как эта тема ложится в наш курс по ИИ-агентам, который разработан под руководством Никиты Зелинского.
Подробности рассказываем в гс выше — включай, чтобы не пропустить.
📚Напоминаем про наш полный курс «Самоучитель по Python для начинающих»
Мы написали и собрали для вас в одну подборку все 25 глав и 230 практических заданий!
🐍 Часть 1: Особенности, сферы применения, установка, онлайн IDE
🐍 Часть 2: Все, что нужно для изучения Python с нуля – книги, сайты, каналы и курсы
🐍 Часть 3: Типы данных: преобразование и базовые операции
🐍 Часть 4: Методы работы со строками
🐍 Часть 5: Методы работы со списками и списковыми включениями
🐍 Часть 6: Методы работы со словарями и генераторами словарей
🐍 Часть 7: Методы работы с кортежами
🐍 Часть 8: Методы работы со множествами
🐍 Часть 9: Особенности цикла for
🐍 Часть 10: Условный цикл while
🐍 Часть 11: Функции с позиционными и именованными аргументами
🐍 Часть 12: Анонимные функции
🐍 Часть 13: Рекурсивные функции
🐍 Часть 14: Функции высшего порядка, замыкания и декораторы
🐍 Часть 15: Методы работы с файлами и файловой системой
🐍 Часть 16: Регулярные выражения
🐍 Часть 17: Основы скрапинга и парсинга
🐍 Часть 18: Основы ООП – инкапсуляция и наследование
🐍 Часть 19: Основы ООП – абстракция и полиморфизм
🐍 Часть 20: Графический интерфейс на Tkinter
🐍 Часть 21: Основы разработки игр на Pygame
🐍 Часть 22: Основы работы с SQLite
🐍 Часть 23: Основы веб-разработки на Flask
🐍 Часть 24: Основы работы с NumPy
🐍 Часть 25: Основы анализа данных с Pandas
🏃♀️ Proglib Academy
#буст
Мы написали и собрали для вас в одну подборку все 25 глав и 230 практических заданий!
🐍 Часть 1: Особенности, сферы применения, установка, онлайн IDE
🐍 Часть 2: Все, что нужно для изучения Python с нуля – книги, сайты, каналы и курсы
🐍 Часть 3: Типы данных: преобразование и базовые операции
🐍 Часть 4: Методы работы со строками
🐍 Часть 5: Методы работы со списками и списковыми включениями
🐍 Часть 6: Методы работы со словарями и генераторами словарей
🐍 Часть 7: Методы работы с кортежами
🐍 Часть 8: Методы работы со множествами
🐍 Часть 9: Особенности цикла for
🐍 Часть 10: Условный цикл while
🐍 Часть 11: Функции с позиционными и именованными аргументами
🐍 Часть 12: Анонимные функции
🐍 Часть 13: Рекурсивные функции
🐍 Часть 14: Функции высшего порядка, замыкания и декораторы
🐍 Часть 15: Методы работы с файлами и файловой системой
🐍 Часть 16: Регулярные выражения
🐍 Часть 17: Основы скрапинга и парсинга
🐍 Часть 18: Основы ООП – инкапсуляция и наследование
🐍 Часть 19: Основы ООП – абстракция и полиморфизм
🐍 Часть 20: Графический интерфейс на Tkinter
🐍 Часть 21: Основы разработки игр на Pygame
🐍 Часть 22: Основы работы с SQLite
🐍 Часть 23: Основы веб-разработки на Flask
🐍 Часть 24: Основы работы с NumPy
🐍 Часть 25: Основы анализа данных с Pandas
#буст
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
📝 Промпт для идеального код ревью
Чтобы облегчить код ревью, используйте этот промпт для ChatGPT:
⚡️ Как вы обычно проводите код ревью? Делитесь в комментариях!
🏃♀️ Proglib Academy
#буст
Чтобы облегчить код ревью, используйте этот промпт для ChatGPT:
1. Проанализируй приведенный [язык] код на предмет признаков проблемного кода и предложи улучшения: [фрагмент кода].
2. Проверь [язык] код на предмет правильности логирования и мониторинга: [фрагмент кода].
3. Проанализируй [язык] код на предмет потенциальных проблем масштабируемости: [фрагмент кода].
4. Оцени тестовое покрытие этого [язык] кода: [фрагмент кода].
5. Оцени [язык] код на совместимость с [платформой или технологией]: [фрагмент кода].
⚡️ Как вы обычно проводите код ревью? Делитесь в комментариях!
#буст
Please open Telegram to view this post
VIEW IN TELEGRAM
🙏1
📉💼 Грейдинг умер, ИИ захватил собесы: 5 трендов IT-найма 2025
Помнишь времена, когда можно было поменять работу и сразу получать на 50% больше? Забудь. В 2025-м правила игры кардинально изменились — теперь компании боятся ChatGPT на собесах, а искать работу через LinkedIn стало бесполезно. Разбираем 5 трендов, которые перевернули IT-найм с ног на голову.
🔗 Читать статью
🏃♀️ Proglib Academy
#буст
Помнишь времена, когда можно было поменять работу и сразу получать на 50% больше? Забудь. В 2025-м правила игры кардинально изменились — теперь компании боятся ChatGPT на собесах, а искать работу через LinkedIn стало бесполезно. Разбираем 5 трендов, которые перевернули IT-найм с ног на голову.
#буст
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
Как быстро разобраться в сложных данных, выделить ключевые закономерности и донести инсайты до команды? Этот промпт поможет вам анализировать данные глубже и принимать обоснованные решения:
💬 Промпт:
Analyze [dataset/feature] and identify key trends, correlations, and anomalies. Summarize the most important insights in a way that can be easily explained to non-technical stakeholders. Suggest potential next steps or hypotheses that should be tested further. If possible, recommend a visualization that best represents the findings.
• Четкое понимание трендов, скрытых закономерностей и аномалий
• Способы объяснить сложные данные простым языком для бизнеса
• Идеи для дальнейшего исследования и проверки гипотез
• Рекомендации по лучшим визуализациям для наглядного представления данных
• Используйте промпт для первичного анализа данных перед презентацией
• Проверяйте гипотезы перед постановкой экспериментов
• Готовьте краткие и понятные отчеты для команды и руководства
• Экспериментируйте с разными визуализациями, чтобы сделать инсайты еще понятнее
#буст
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
🔥 Не пропустите событие осени для AI-комьюнити
24 сентября, 19:00 Мск — бесплатный вебинар с Максимом Шаланкиным «ИИ-агенты: новая фаза развития искусственного интеллекта»
😤 Пока все спорят, «боты это или нет», мы покажем, как работают настоящие агенты: с планированием, инструментами и памятью. За час Максим разберёт:
— почему ИИ-агенты сейчас на пике инвестиций
— чем они отличаются от ChatGPT и обычных моделей
— цикл агента: восприятие → планирование → действие → обучение
— живое демо простого агента
— как бизнес уже получает ROI до 80%
⚡️ Хотите спросить у Максима всё, что обычно остаётся «за кадром»? Ловите шанс — только в прямом эфире.
⏰ Мест мало, регистрация закроется, как только забьём комнату
24 сентября, 19:00 Мск — бесплатный вебинар с Максимом Шаланкиным «ИИ-агенты: новая фаза развития искусственного интеллекта»
😤 Пока все спорят, «боты это или нет», мы покажем, как работают настоящие агенты: с планированием, инструментами и памятью. За час Максим разберёт:
— почему ИИ-агенты сейчас на пике инвестиций
— чем они отличаются от ChatGPT и обычных моделей
— цикл агента: восприятие → планирование → действие → обучение
— живое демо простого агента
— как бизнес уже получает ROI до 80%
⚡️ Хотите спросить у Максима всё, что обычно остаётся «за кадром»? Ловите шанс — только в прямом эфире.
⏰ Мест мало, регистрация закроется, как только забьём комнату
Помните времена, когда на собесе спрашивали FizzBuzz? Забудьте. Теперь вас могут попросить писать код на бумаге, а параллельно проверят, не подглядываете ли вы в ChatGPT.
В карточках — пять трендов, которые перевернули рынок: от смерти грейдинга до «AI-friendly» собеседований.
#буст
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
Если вы думаете, что Dropout просто обнуляет часть нейронов, это лишь половина правды. Есть ещё один важный шаг, который делает обучение стабильным.
— Представьте, что у нас есть 100 нейронов в предыдущем слое, все с активацией 1.
— Все веса соединений с нейроном A в следующем слое равны 1.
— Dropout = 50% — половина нейронов отключается во время обучения.
— Во время обучения: половина нейронов выключена, так что вход нейрона A ≈ 50.
— Во время inference: Dropout не применяется, вход A = 100.
Во время обучения нейрон получает меньший вход, чем во время inference. Это создаёт дисбаланс и может ухудшить обобщающую способность сети.
Чтобы это исправить, Dropout масштабирует оставшиеся активации во время обучения на коэффициент
1/(1-p)
, где p
— доля отключённых нейронов.— Dropout = 50% (
p = 0.5
).— Вход 50 масштабируется:
50 / (1 - 0.5) = 100
.Теперь во время обучения вход нейрона A примерно соответствует тому, что он получит при inference. Это делает поведение сети стабильным.
import torch
import torch.nn as nn
dropout = nn.Dropout(p=0.5)
tensor = torch.ones(100)
# Обучение (train mode)
print(dropout(tensor).sum()) # ~100 (масштабировано)
# Вывод (eval mode)
dropout.eval()
print(dropout(tensor).sum()) # 100 (без Dropout)
В режиме обучения оставшиеся значения увеличиваются, в режиме inference — нет.
Dropout не просто отключает нейроны — он ещё масштабирует оставшиеся активации, чтобы модель обучалась корректно.
#буст
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3🙏1👾1
В каком типе данных сохраняются *args при передаче в функцию?
👾 — Список
👍 — Кортеж
🥰 — Словарь
⚡ — Ничего из вышеперечисленного
🏃♀️ Proglib Academy
#междусобойчик
👾 — Список
👍 — Кортеж
🥰 — Словарь
#междусобойчик
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3❤1