This media is not supported in your browser
VIEW IN TELEGRAM
🔹 How to: как работают генераторы в Python
Генераторы — мощный инструмент для итераций, особенно при работе с большими данными. В отличие от обычных функций, они вычисляют значения лениво, выдавая их по запросу и экономя память. Это делает код более эффективным и удобным для повторного использования.
➡️ Принцип работы
Вместо возврата всех значений сразу, генератор использует
При вызове
➡️ Пример: Фибоначчи на генераторах
Такой генератор можно использовать для обработки больших последовательностей без лишних затрат памяти.
➡️ Генераторы vs. списки
Генераторы экономят память, так как не хранят все элементы в памяти:
Разница очевидна: генератор занимает всего 208 байт, тогда как список — 8+ мегабайт!
➡️ Генераторные выражения
Аналогично списковым включениям, но работают лениво:
➡️ Комбинирование генераторов
С помощью itertools генераторы можно объединять и фильтровать:
➡️ Когда использовать генераторы
— Обработка больших данных без перегрузки памяти
— Потоковая обработка (например, чтение файлов)
— Создание бесконечных последовательностей
— Оптимизация скорости и эффективности кода
Proglib Academy #буст
Генераторы — мощный инструмент для итераций, особенно при работе с большими данными. В отличие от обычных функций, они вычисляют значения лениво, выдавая их по запросу и экономя память. Это делает код более эффективным и удобным для повторного использования.
Вместо возврата всех значений сразу, генератор использует
yield
, который приостанавливает выполнение функции, сохраняя её состояние:def simple_generator():
print("Первый yield")
yield 1
print("Второй yield")
yield 2
gen = simple_generator()
print(next(gen)) # Первый yield → 1
print(next(gen)) # Второй yield → 2
При вызове
next()
выполнение продолжается с места, где остановилось. Это позволяет работать с последовательностями, не загружая их полностью в память.def fibonacci_generator(limit):
a, b = 0, 1
while a < limit:
yield a
a, b = b, a + b
Такой генератор можно использовать для обработки больших последовательностей без лишних затрат памяти.
Генераторы экономят память, так как не хранят все элементы в памяти:
import sys
def list_numbers(n):
return [i for i in range(n)]
def generator_numbers(n):
return (i for i in range(n))
print(sys.getsizeof(list_numbers(1000000))) # 8448728 байт
print(sys.getsizeof(generator_numbers(1000000))) # 208 байт
Разница очевидна: генератор занимает всего 208 байт, тогда как список — 8+ мегабайт!
Аналогично списковым включениям, но работают лениво:
squares_list = [x * x for x in range(10)] # Обычный список
squares_gen = (x * x for x in range(10)) # Генератор
С помощью itertools генераторы можно объединять и фильтровать:
from itertools import chain, filterfalse
result = chain((x * x for x in range(10)), (y + 10 for y in range(5)))
odd_squares = filterfalse(lambda x: x % 2 == 0, (x * x for x in range(10)))
— Обработка больших данных без перегрузки памяти
— Потоковая обработка (например, чтение файлов)
— Создание бесконечных последовательностей
— Оптимизация скорости и эффективности кода
Proglib Academy #буст
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3❤1
🤖 Знаете, чем настоящий AI отличается от чат-бота?
Чат-бот просит перезагрузить роутер, а настоящий AI уже умеет читать ваши эмоции в чате, включать музыку под ваше настроение, контролировать погрузку руды с точностью Терминатора и даже находить на КТ-снимках то, чего не заметит человеческий глаз.
Современные компании для таких задач всё чаще используют Deep Learning — алгоритмы на основе нейросетей. Но чтобы попасть в эту лигу, нужен фундамент. И имя ему — Machine Learning.
Наш новый курс по ML — это не волшебная таблетка. Это честный и структурированный путь в мир Data Science. Мы дадим вам базу, с которой вы:
✅ разберётесь, как мыслят машины (спойлер:матрицами! );
✅ научитесь строить работающие модели, а не карточные домики;
✅ получите трамплин для прыжка в Deep Learning.
Хватит смотреть, как другие запускают ракеты. Пора строить свой собственный космодром.
Начните с фундамента на нашем курсе по Machine Learning!
Чат-бот просит перезагрузить роутер, а настоящий AI уже умеет читать ваши эмоции в чате, включать музыку под ваше настроение, контролировать погрузку руды с точностью Терминатора и даже находить на КТ-снимках то, чего не заметит человеческий глаз.
Современные компании для таких задач всё чаще используют Deep Learning — алгоритмы на основе нейросетей. Но чтобы попасть в эту лигу, нужен фундамент. И имя ему — Machine Learning.
Наш новый курс по ML — это не волшебная таблетка. Это честный и структурированный путь в мир Data Science. Мы дадим вам базу, с которой вы:
✅ разберётесь, как мыслят машины (спойлер:
✅ научитесь строить работающие модели, а не карточные домики;
✅ получите трамплин для прыжка в Deep Learning.
Хватит смотреть, как другие запускают ракеты. Пора строить свой собственный космодром.
Начните с фундамента на нашем курсе по Machine Learning!
— Их заменил ИИ, который они же и обучали.
Как вам такой поворот?
Proglib Academy #развлекалово
Please open Telegram to view this post
VIEW IN TELEGRAM
😁3😢1
🔥 Знакомьтесь, преподаватель нашего нового курса по ML — Мария Жарова.
В карточках рассказали, чем Мария занимается и какие советы даёт тем, кто хочет расти в IT и Data Science ☝️
А если вы уже поняли, что тянуть нечего, начните свой путь в ML правильно: с реальной практикой, поддержкой ментора и видимым результатом.
👉 Записывайтесь на курс
В карточках рассказали, чем Мария занимается и какие советы даёт тем, кто хочет расти в IT и Data Science ☝️
А если вы уже поняли, что тянуть нечего, начните свой путь в ML правильно: с реальной практикой, поддержкой ментора и видимым результатом.
👉 Записывайтесь на курс
❤1🔥1
От чего произошло название языка Python?
Anonymous Poll
38%
От рептилии
48%
От телевизионного шоу
9%
От мифического существа
5%
От производителя автомобилей
😁5⚡2🌚2
Алгоритмы — не «для олимпиадников». Это то, что делает твой код быстрым.
Не на 5%, а в 10–100 раз.
Вот что реально помогает:
— выбрал другой алгоритм — и лагов нет,
— думаешь про сложность — и не пишешь мусор,
— знаешь про Trie, префиксные суммы, LRU — и у тебя всё летает.
Не гадай, где узкое место. Мерь. Оптимизируй. Ускоряй.
https://proglib.io/sh/BZ6EzqDbaW
Proglib Academy #буст
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2❤1🙏1
1. Проблема не в мотивации. Проблема в хаосе. Нет среды = нет привычки = нет прогресса.
2. У тебя может быть даже Mac за 200к, но без чёткой системы ты всё равно будешь прокрастинировать.
3. Начни с малого:
– Выдели 30 минут в день на код.
– Веди журнал — что учил, что пробовал.
– Учи 1 тему → решай 2 задачи → пиши 1 комментарий к чужому коду.
4. Создай пространство, где ты — разработчик:
– даже если это Telegram-чат с собой;
– даже если ты пишешь код в Google Keep или бумажной тетрадке.
Ритуал важнее инструмента.
5. Среда — это не железо. Это:
Proglib Academy #буст
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3🔥2
🔥 Вы ещё можете застать старый добрый Proglib — с вечным доступом к курсам.
С 1 августа всё меняется: навсегда — останутся только те, кто успел купить сейчас.
-40% на все курсы. Включая обновлённый Python (кроме курса по AI-агентам)
Это не просто распродажа. Это — последняя точка входа в Proglib Academy по старым правилам.
📚 Выбрать и забрать свой курс навсегда → https://clc.to/TBtqYA
С 1 августа всё меняется: навсегда — останутся только те, кто успел купить сейчас.
-40% на все курсы. Включая обновлённый Python (кроме курса по AI-агентам)
Это не просто распродажа. Это — последняя точка входа в Proglib Academy по старым правилам.
📚 Выбрать и забрать свой курс навсегда → https://clc.to/TBtqYA
Частый вопрос от новичков: «Чем вообще отличается Vite от Webpack и зачем всё это нужно?»
— Чем Vite ускоряет разработку в разы (и где подводные камни);
— Почему Webpack до сих пор топ для enterprise-проектов;
— Как настроить оба сборщика — пошагово, с примерами кода;
— Какую систему выбрать для своего pet-проекта, а какую — для продакшена.
Proglib Academy #буст
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
Please open Telegram to view this post
VIEW IN TELEGRAM
🙏2
⚡️ Мы запускаем онлайн-курс по машинному обучению для Data Science.
Хочешь войти в Data Science, но не знаешь, с чего начать?
А может, ты уже в теме, но чувствуешь, что знаний не хватает?
Старт курса — 12 августа, и это отличный шанс пройти весь путь — от теории до уверенного применения.
Что внутри:
— от линейных моделей и градиентного спуска до бустинга и рекомендательных систем
— реальные примеры, практика, задачи и живая менторская поддержка
— всё, что нужно, чтобы не просто разобраться, а применять ML в реальных проектах
Ведет курс Мария Жарова:
ML-инженер в Wildberries, преподаватель МФТИ, ТГУ и МИФИ, практик и автор канала @data_easy
🎁 По промокодуEarlybird — скидка 10.000 рублей, только до 27 июля.
Для первых 10 студентов мы подготовили эксклюзивный лонгрид по теме курса, который позволит начать учиться уже сейчас.
👉 Записаться на курс
Хочешь войти в Data Science, но не знаешь, с чего начать?
А может, ты уже в теме, но чувствуешь, что знаний не хватает?
Старт курса — 12 августа, и это отличный шанс пройти весь путь — от теории до уверенного применения.
Что внутри:
— от линейных моделей и градиентного спуска до бустинга и рекомендательных систем
— реальные примеры, практика, задачи и живая менторская поддержка
— всё, что нужно, чтобы не просто разобраться, а применять ML в реальных проектах
Ведет курс Мария Жарова:
ML-инженер в Wildberries, преподаватель МФТИ, ТГУ и МИФИ, практик и автор канала @data_easy
🎁 По промокоду
Для первых 10 студентов мы подготовили эксклюзивный лонгрид по теме курса, который позволит начать учиться уже сейчас.
👉 Записаться на курс
❤1🔥1