Что лучше использовать: PyTorch или TensorFlow?
Хотите разобраться в инструментах машинного обучения? Давайте разберём в сравнении PyTorch и TensorFlow:
PyTorch — это простой инструмент, который хорошо дружит с Python и создан на базе библиотеки Torch.
TensorFlow — это большая система от Google Brain, поддерживающая различные платформы и языки программирования. Есть множество предварительно обученных моделей.
У первого из преимуществ простота, гибкость, удобство с Python. Но есть ограничения с визуализацией и сервированием моделей. А TensorFlow хорошо может в производительность и масштабируемость, но иногда подводит с обратной совместимостью и скоростью.
Эта статья поможет определиться с выбором из двух инструментов для конкретной задачи.
#pytorch #tensorflow #ml
Хотите разобраться в инструментах машинного обучения? Давайте разберём в сравнении PyTorch и TensorFlow:
PyTorch — это простой инструмент, который хорошо дружит с Python и создан на базе библиотеки Torch.
TensorFlow — это большая система от Google Brain, поддерживающая различные платформы и языки программирования. Есть множество предварительно обученных моделей.
У первого из преимуществ простота, гибкость, удобство с Python. Но есть ограничения с визуализацией и сервированием моделей. А TensorFlow хорошо может в производительность и масштабируемость, но иногда подводит с обратной совместимостью и скоростью.
Эта статья поможет определиться с выбором из двух инструментов для конкретной задачи.
#pytorch #tensorflow #ml
Знакомимся с Data Science и машинным обучением
Делать мы это будем с помощью бесплатного курса, который включает 30 уроков, 54 теста и 21 задачу. В рамках курса вы изучите основные теоретические понятия, а также познакомитесь с библиотеками Pandas и Scikit-learn — наиболее популярными инструменатами для анализа данных и машинного обучения, используя язык программирования Python.
Этих знаний более чем достаточно для старта в этой области. А начать можно уже сейчас по ссылке.
#курс #datascience #ml
Делать мы это будем с помощью бесплатного курса, который включает 30 уроков, 54 теста и 21 задачу. В рамках курса вы изучите основные теоретические понятия, а также познакомитесь с библиотеками Pandas и Scikit-learn — наиболее популярными инструменатами для анализа данных и машинного обучения, используя язык программирования Python.
Этих знаний более чем достаточно для старта в этой области. А начать можно уже сейчас по ссылке.
#курс #datascience #ml
Forwarded from Метод утёнка
Начните новую неделю с инструментом, который упростит вам жизнь
napkin — это бесплатная нейронка, которая поможет вам создавать красивые графики и таблицы из любого текста. При этом она предложит вам сразу несколько вариантов, которые можно сохранить в формате PDF, PNG или SVG.
Попробовать можно по ссылке.
#инструменты #ml
napkin — это бесплатная нейронка, которая поможет вам создавать красивые графики и таблицы из любого текста. При этом она предложит вам сразу несколько вариантов, которые можно сохранить в формате PDF, PNG или SVG.
Попробовать можно по ссылке.
#инструменты #ml
Компьютерное зрение на С++
У нас тут периодически бывают статьи про машинное обучение и компьютерное зрение. Но, как правило, все они касаются Python. Сейчас же предлагаю посмотреть на реализацию на C++.
Здесь вы узнаете, как реализовать обнаружение объектов в реальном времени с помощью камеры на мобильной платформе Android с использованием библиотек PyTorch и NCNN и моделей компьютерного зрения YOLOv5 и YOLOv4.
Часть 1
Часть 2
#cpp #cv #ml
У нас тут периодически бывают статьи про машинное обучение и компьютерное зрение. Но, как правило, все они касаются Python. Сейчас же предлагаю посмотреть на реализацию на C++.
Здесь вы узнаете, как реализовать обнаружение объектов в реальном времени с помощью камеры на мобильной платформе Android с использованием библиотек PyTorch и NCNN и моделей компьютерного зрения YOLOv5 и YOLOv4.
Часть 1
Часть 2
#cpp #cv #ml
Студент взломал топовую нейронку
Всё началось с того, что ему нужно было написать научную статью по теме ИБ. И в ходе работы над ней так увлёкся, что взломал известную Claude 3.5 Sonnet.
К его сожалению и нашему счастью весь материал в научную статью поместить не удалось. Поэтому он написал отдельную статью, где поделился всеми подробностями. А мы её принесли вам, так что скорее читайте — там много интересного.
#иб #ml
Всё началось с того, что ему нужно было написать научную статью по теме ИБ. И в ходе работы над ней так увлёкся, что взломал известную Claude 3.5 Sonnet.
К его сожалению и нашему счастью весь материал в научную статью поместить не удалось. Поэтому он написал отдельную статью, где поделился всеми подробностями. А мы её принесли вам, так что скорее читайте — там много интересного.
#иб #ml
Как построить карьеру в области искусственного интеллекта. Советы от Эндрю Ына
Эндрю Ын — известный учёный в области информатики, доцент Стэнфордского университета, исследователь робототехники, машинного обучения и искусственного интеллекта. На протяжении многих лет он смог наблюдать, как тысячи его студентов начинают свою карьеру в этой области.
На основе своих наблюдений он предложил практическую схему, по которой можно проложить собственный карьерный трек. Подробнее о схеме и каждом её пункте можно прочитать в этой статье.
#ml #советы #карьера
Эндрю Ын — известный учёный в области информатики, доцент Стэнфордского университета, исследователь робототехники, машинного обучения и искусственного интеллекта. На протяжении многих лет он смог наблюдать, как тысячи его студентов начинают свою карьеру в этой области.
На основе своих наблюдений он предложил практическую схему, по которой можно проложить собственный карьерный трек. Подробнее о схеме и каждом её пункте можно прочитать в этой статье.
#ml #советы #карьера