Python RU
13.3K subscribers
901 photos
47 videos
38 files
1.15K links
Все для python разработчиков

админ - @notxxx1

@python_job_interview - Python собеседования

@ai_machinelearning_big_data - машинное обучение

@itchannels_telegram - 🔥лучшие ит-каналы

@programming_books_it - it книги

@pythonl

РКН: clck.ru/3Fmy2j
Download Telegram
Forwarded from Machinelearning
🌟 HunyuanPortrait: код и веса.

Спустя чуть больше двух месяцев, Tencent опубликовала веса и код инференса проекта HunyuanPortrait - системы на основе диффузионных моделей для создания реалистичных анимированных портретов.

На вход подается видео, с которого движения переносятся на целевое изображение для "оживления". Режима "тext-to-motion", судя по всему - нет.

Под капотом - набор моделей на основе SVD, DiNOv2, Arc2Face и YoloFace.

Разработчики уверяют, что инференс заводится на 24 Гб VRAM и их метод лучше контролирует анимацию и делает более плавные переходы между кадрами, чем существующие аналоги.

⚠️ WebUI нет, адаптации под ComfyUI - пока тоже нет.


▶️Локальный инференс:

# Clone repo
git clone https://github.com/Tencent-Hunyuan/HunyuanPortrait

# Install requirements
pip3 install torch torchvision torchaudio
pip3 install -r requirements.txt

# Run
video_path="your_video.mp4"
image_path="your_image.png"

python inference.py \
--config config/hunyuan-portrait.yaml \
--video_path $video_path \
--image_path $image_path



🟡Страница проекта
🟡Набор моделей
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #HunyuanPortrait
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Python/ django
🤖 AI, который сам пишет код — умный агент на базе LangGraph

Проект находится в активной разработке и уже умеет автоматизировать весь цикл: от планирования проекта до генерации кода. Всё построено на надёжных multi-agent workflow'ах с использованием LangGraph.


🚀 Что делает агент:

🧠 Понимает задачу и строит план
AI-архитектор анализирует требования и создаёт пошаговый план разработки.

💻 Генерирует и редактирует код
Dev-агент аккуратно применяет изменения в кодовой базе, редактируя конкретные файлы.

🔁 Разделяет роли — надёжнее работает
Отдельные агенты для планирования и реализации — меньше ошибок и больше контроля.

🧬 Понимает структуру проекта
Использует tree-sitter и семантический поиск, чтобы ориентироваться в коде как человек.

📦 Работает по шагам
Разбивает задачи на мелкие изменения — удобно для review и безопасно для CI.

💡 Если интересуешься автоматизацией разработки, AI-помощниками и мультиагентными системами — стоит попробовать уже сейчас.

Github

@pythonl


#AI #AutoCoding #LangGraph #DevTools #MultiAgent #CodeAutomation
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
📚 ArXiv Research Agent — отличный помощник для научных исследований.

Агент самостоятельно:
• Найдёт релевантные статьи с arXiv, bioRxiv, medRxiv и Semantic Scholar
• Проведёт полноценный литературный обзор
• Покажет, что упущено, и предложит, что добавить
• Даст инсайты и цитаты из миллионов научных работ
• Генерирует готовые конспекты
И др.

Вскоре обещают добавить поддержку MCP.

🔜 Попробовать: https://www.alphaxiv.org/assistant

@ai_machinelearning_big_data


#agent #ArXiv #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
✔️ OpenAI выложили в открытый доступ Customer Service Agent Demo

Теперь у всех есть пример, как сделать продакшн-агентов с маршрутизацией, безопасностью и интерфейсом — от запроса до ответа.

Что это такое:

• Многоагентная система для поддержки клиентов (например: бронирование мест, отмена рейса, статус рейса, FAQ)
• Демка написана на Python + Next.js
• Использует OpenAI Agents SDK
• Встроены guardrails: защита от неуместных запросов и попыток обхода правил
• UI: внутри готовый интерфейс чат-бота

Как работает:

1. Пользователь пишет запрос
2. Система выбирает подходящего агента (например, `SeatBooking`)
3. Агент отвечает или передаёт диалог другому
4. Есть fallback на человека, если нужно

Как запустить:


# Backend
cd python-backend
python -m venv .venv && source .venv/bin/activate
pip install -r requirements.txt
uvicorn api:app --reload --port 8000

# Frontend
cd ui
npm install
npm run dev


Далее открываем: https://localhost:3000

Особенности
• MIT-лицензия — можно адаптировать под свои задачи
• Удобно расширять: добавлять новых агентов, инструменты, правила
• Простой код, всё задокументировано
• Рабочий кейс от OpenAI

🔗 GitHub: github.com/openai/openai-cs-agents-demo

Если вы хотите собрать систему из агентов — это отличная точка старта.

@ai_machinelearning_big_data

#chatgpt #openai #aiagents #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
🔟 Open‑source Deep Research Assistants 🤖

Глубокие исследовательские агент
ы — не просто чат‑боты, а полноценные ИИ‑ассистенты, способные искать информацию, взаимодействовать с инструментами, планировать и писать отчёты. Ниже — 10 мощных open‑source проектов, которые уже можно протестировать:

1. DeerFlow — модульная система от Bytedance: DeerFlow — open‑source фреймворк от Bytedance для создания модульных LLM-агентов.
Поддерживает:
- планирование действий,
- анализ кода,
- генерацию отчётов (включая Text-to-Speech),
- адаптивную интеграцию инструментов.
Создан для исследований, автоматизации и построения сложных агентных пайплайнов.
https://github.com/bytedance/deer-flow

2. Alita — самообучающийся агент с поддержкой Model Context Protocols (MCP), всё в одном модуле. Alita — агент, который сам придумывает, как ему расширить себя, не полагаясь на заранее написанные сценарии, и уже демонстрирует топовые результаты на сложных тестах.
https://github.com/CharlesQ9/Alita

3. WebThinker — автономный веб‑поиск с логикой "думай‑ищи‑пиши", RL‑обучением и глубокой навигацией
https://github.com/RUC-NLPIR/WebThinker

4. SimpleDeepSearcher — это лёгкий, но эффективный open‑source фреймворк от RUCAIBox, предназначенный для автономного веб-поиска через импровизированные многотуровые сессии:

- Использует Supervised Fine‑Tuning (SFT) вместо сложного RL, что значительно упрощает обучение и снижает вычислительные затраты
- Генерирует реалистичные траектории поиска и рассуждений, симулируя поведение пользователя в живом поисковом окружении .
- Критически отбирает данные по нескольким критериям качества: разнообразие запросов, сложность, структура ответов

5. AgenticSeek — приватный on‑device ассистент с выбором эксперта под задачу и голосовым управлением
https://github.com/Fosowl/agenticSeek

6. Suna — универсальный ассистент: браузер, CLI, работа с файлами, API, деплой
https://github.com/kortix-ai/suna

7. DeepResearcher — это комплексный open-source фреймворк от GAIR‑NLP, предназначенный для обучения LLM‑агентов, способных проводить глубокие исследования в автономном режиме, взаимодействуя с вебом. Использует несколько агентов‑браузеров, которые совместно исследуют веб и обрабатывают информацию
https://github.com/GAIR-NLP/DeepResearcher

8. Search‑R1 — агент на PPO/GRPO с поддержкой LLaMA3, Qwen2.5 и кастомных поисковиков. Агент учится эффективному циклу «думай — ищи — думай — отвечай» через RL, достигая важных улучшений в точности ответов и эффективности поиска.
https://github.com/PeterGriffinJin/Search-R1

9. ReCall — это фреймворк на основе RL, который учит LLM "должным образом" вызывать и комбинировать инструменты, используя сгенерированные задачи, без необходимости вручную собирать примеры вызовов — и всё это в открытом доступе.
https://github.com/Agent-RL/ReCall

10. OWL — мультиагентная система на CAMEL‑AI для динамического взаимодействия между агентами
https://github.com/camel-ai/owl

Агенты умеют планировать, взаимодействовать с браузером, запускать скрипты, интегрироваться с API и работать автономно.

Всё проекты — с открытым кодом. Можно изучить, собрать и доработать под свои задачи.

@ai_machinelearning_big_data

#ml #rl #aiagents #ai #agents
Please open Telegram to view this post
VIEW IN TELEGRAM