Physics.Math.Code
153K subscribers
5.22K photos
2.2K videos
5.81K files
4.55K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

Обратная связь: @physicist_i
Download Telegram
This media is not supported in your browser
VIEW IN TELEGRAM
Физика карбидных ламп 🔦

Прежде чем фары автомобилей и фары велосипедов питались от электричества, по темным дорогам двигались огни, рожденные химической реакцией. Давайте заглянем в прошлое и разберемся, как работали карбидные лампы и насколько они были опасны. Устройство лампы было гениально простым и основывалось на интенсивной химической реакции.

1. Реакция: В нижний резервуар закладывали карбид кальция (CaC₂) — сероватое твердое вещество. В верхний заливали воду.

2. Химия: При открытии клапана вода по каплям поступала на карбид. Происходила бурная реакция: CaC₂ + 2H₂O → C₂H₂ + Ca(OH)₂ — Проще говоря, карбид кальция + вода = ацетилен (C₂H₂) + гашеная известь.

3. Физика горения: Полученный горючий газ ацетилен по трубке подавался в горелку (сопло). Его поджигали спичкой. Ключевой элемент — форма сопла (жиклера). Она создавала узкую струю газа, которая, вырываясь, смешивалась с кислородом воздуха. Эта смесь горела ровным и ярким белым пламенем.

☀️ Факт из физики: Яркость пламени ацетилена одна из самых высоких среди углеводородных газов. Это связано с большим количеством несгоревших раскаленных частиц углерода в пламени (как и в керосиновой лампе), что делает его свет очень эффективным для освещения.

Однако, при всех плюсах, карбидные лампы были источником сразу нескольких рисков:

1. Взрывоопасность. Ацетилен образует с воздухом взрывоопасную смесь в очень широком диапазоне концентраций (от 2.5% до 81%). Малейшая утечка из резервуара или неправильное гашение лампы могли привести к хлопку или серьезному взрыву.

2. Отравление угарным газом (CO). При недостатке кислорода (например, в закрытом гараже или палатке) ацетилен сгорает не полностью, выделяя смертельно опасный угарный газ. Этот газ не имеет запаха и цвета, что делало его особенно коварным.

3. Химические ожоги. Побочный продукт реакции — гашеная известь (Ca(OH)₂) — является едкой щелочью. При чистке лампы можно было легко получить химический ожог кожи или глаз.

4. Пожароопасность. Опрокидывание лампы могло привести к возгоранию.

Карбидные фары были настолько эффективны, что использовались на первых автомобилях (например, на Ford Model T) и даже на маяках. Их свет был мощным и пробивал туман лучше ранних электрических фар. Карбидная лампа — это великолепный пример простого и эффективного применения химии и физики. Она освещала путь первом автомобилистам, шахтерам и спелеологам. Но за ее ярким светом всегда скрывалась тень реальной опасности, что в конечном итоге и привело к ее замене на более безопасные и удобные электрические источники света.

🔍 Факт из оптики: источник света (пламя горелки) практически всегда располагался в фокусе вогнутого зеркала-рефлектора. Вогнутое зеркало, особенно имеющее параболическую форму, обладает важным свойством: все лучи света, исходящие из его фокуса, после отражения от зеркала идут параллельным пучком. Пламя ацетиленовой горелки светит во все стороны. Если его поместить в фокус такого зеркала, "задняя" и "боковая" часть светового потока не теряется, а собирается зеркалом и превращается в мощный, направленный луч, который может освещать дорогу на десятки метров вперед. Это резко повышало КПД фары. Именно параболическая форма (а не сферическая) идеально справляется с формированием параллельного пучка без искажений. Сферическое зеркало страдает аберрацией, но его было проще изготовить, поэтому в более дешевых моделях использовали его. #физика #химия #техника #термодинамика #оптика #physics #science #наука

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6135🔥17😱2🤩2❤‍🔥1🤯1
Конденсационная камера — принцип действия и источник альфа-частиц
😖 Конденсационная камера — радиационный фон

Камера Вильсона (конденсационная камера, туманная камера) — координатный детектор быстрых заряженных частиц, в котором используется способность ионов выполнять роль зародышей капель жидкости в переохлажденном перенасыщенном паре.

Для создания переохлаждённого пара используется быстрое адиабатическое расширение, сопровождающееся резким понижением температуры.

Быстрая заряженная частица, двигаясь сквозь облако перенасыщенного пара, ионизирует его. Процесс конденсации пара происходит быстрее в местах образования ионов. Как следствие, там, где пролетела заряженная частица, образуется след из капелек воды, который можно сфотографировать. Именно из-за такого вида треков камера получила свое английское название — облачная камера (англ. cloud chamber).

Камеры Вильсона обычно помещают в магнитное поле, в котором траектории заряженных частиц искривляются. Определение радиуса кривизны траектории позволяет определить удельный электрический заряд частицы, а, следовательно, идентифицировать её.

Камеру изобрел в 1912 году шотландский физик Чарльз Вильсон. За изобретение камеры Вильсон получил Нобелевскую премию по физике 1927 года. В 1948 за совершенствование камеры Вильсона и проведенные с ней исследования Нобелевскую премию получил Патрик Блэкетт. #физика #радиактивность #physics #science #ядерная_физика #видеоуроки #наука #опыты #эксперименты

🖥 How Scientists Discovered Atoms? // Как ученые открыли атомы?

💫 Тайна вещества. Научно-популярный фильм СССР 1956 г.

🔥 В СССР делали радиоизотопные термоэлектрические генераторы (РИТЭГи).

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
36👍15🔥102🥰2🤩1🙈1
This media is not supported in your browser
VIEW IN TELEGRAM
🔭 Малоизвестные факты из астрономии для физиков

1. Эффект "Темного потока" (Dark Flow) и возможная мультивселенная.
Анализируя данные космического аппарата WMAP, астрономы обнаружили странное статистическое отклонение: сотни скоплений галактик движутся с очень высокой скоростью в одном и том же направлении, как будто на них действует гравитационное притяжение чего-то, находящегося за пределами наблюдаемой Вселенной. Это явление назвали "Темным потоком". Одна из самых спекулятивных, но интригующих гипотез предполагает, что это — гравитационное влияние другой вселенной в мультивселенной, возникшей в результате инфляции. Для физика это прямой намек на то, что наша Вселенная может не быть изолированной.

2. Солнце — источник "призрачных" частиц, бросающих вызов Стандартной Модели.
Речь о нейтрино. Детекторы на Земле многие годы регистрировали только треть от предсказанного теорией числа солнечных нейтрино. Это была "проблема солнечных нейтрино". Разгадка оказалась в том, что нейтрино осциллируют — самопроизвольно меняют свой сорт (аромат) при движении в пространстве. Это прямое экспериментальное доказательство наличия у нейтрино ненулевой массы, что не предсказывается Стандартной Моделью физики частиц и требует Новой физики.

3. Фотосфера Солнца имеет температуру ниже, чем корона, и мы до сих пор не знаем точно, почему.
Это знаменитая "проблема нагрева солнечной короны". Согласно законам термодинамики, температура должна падать по мере удаления от источника тепла. У Солнца фотосфера (видимая поверхность) имеет температуру около 6000 K. Однако вышележащая корона разогрета до миллионов кельвинов. Основные гипотезы связывают это с магнитогидродинамическими волнами или с процессами магнитного пересоединения, когда энергия магнитного поля Солнца эффективно преобразуется в тепловую. Это классическая незакрытая проблема физики плазмы, происходящая прямо у нас "перед окном".

4. Сверхсветовое движение в квазарах — иллюзия из-за релятивистских эффектов.
Наблюдая за джетами квазаров, астрономы заметили, что некоторые сгустки плазмы, казалось, движутся со скоростью, в несколько раз превышающей скорость света. Это "сверхсветовое движение" является чисто проекционным эффектом. Если струя вещества движется в нашу сторону с релятивистской скоростью (близкой к c), то свет, испущенный позже, проходит меньшее расстояние до нас, чем свет, испущенный раньше. Это создает иллюзию того, что сгусток движется по небу быстрее скорости света. Прямое следствие Специальной теории относительности в астрономических масштабах.

5. Самая быстрая "звезда" в Галактике была выброшена сверхмассивной черной дырой.
Речь о звезде S5-HVS1 в созвездии Журавля. Она движется со скоростью около 1700 км/с. Наиболее вероятный сценарий ее происхождения — тройная звездная система, которая подошла слишком близко к Стрельцу А* (ЧД в центре Млечного Пути). Одна из звезд была захвачена на орбиту, а две другие, связанные гравитацией, были катапультированы с огромной скоростью (механизм Хилса). Это прямое экспериментальное подтверждение гравитационной механики в экстремальных условиях.

🌘 Какой цвет Луны?

📚 Гравитация [3 тома] Мизнер Ч., Торн К., Уилер Дж

⚫️ Первая в истории «фотография» черной дыры. За 40 лет до Event Horizon Telescope 🔭

🚀 Космонавтика и астрономия

☄️ Зачем нам Луна?

💥 Астрономия. Луна 1989 Центральное телевидение

🔵 Географическая оболочка [1976]

🌖 Луна — что это? [1973] Центральное телевидение

🌔 Лунная трасса (Луна-20) [1972] ЦентрНаучФильм

🌚 Жили-были первооткрыватели - 25 серия. Армстронг, Луна и космос

🌘Ученые против мифов. Владимир Сурдин — Американцы были на Луне

🫧 Фазы Луны

⚫️ Бессердечная гравитация [ Алексей Семихатов ]

🌘 Базз Олдрин во время полёта "Аполлона-11" видел нечто

🖥 Против теории относительности и Эйнштейна // Алексей Семихатов, Владимир Сурдин / Вселенная Плюс

🪐 Вся правда об изучении Венеры зондами из СССР

#физика #математика #астрономия #наука #квантовая_физика #science #physics #math

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥86👍4130🤔4❤‍🔥3🤯1🙈1
🧠Логическое мышление: как большие языковые модели научились логическим рассуждениям без больших финансовых и временных затрат.
Исследователи из T-Bank AI Research и лаборатории Центрального университета Omut AI представили метод, который позволяет развивать сложные reasoning-навыки без полного переобучения — своего рода «точной настройке» логических цепочек в уже обученной сети.

В основе подхода лежит не “переписывание мозга”, а steering vectors — компактные векторы-регуляторы, которые усиливают корректные логические шаги модели. На шести математических бенчмарках метод показал сохранение 100% эффективности полного дообучения при изменении всего 0.0016% параметров 14-миллиардной модели. Требования к памяти сократились с гигабайтов до сотен килобайт. Скорость одного из этапов обучения увеличилась с десятков минут до секунд.

Logit-анализ показывает усиление ключевых маркеров логических рассуждений — таких как “потому что”, “следовательно”, “правильно”. В связи с этим поведение LLM становится легче интерпретировать исследователям, которые получают прозрачный инструмент для изучения того, как именно модель рассуждает.

Результаты исследования протестировали на моделях Qwen и LLaMA и представили на EMNLP 2025.

📕Steering LLM Reasoning Through Bias-Only Adaptation

#наука #math #science #программирование #разработка #IT

💡 Physics.Math.Code // @physics_lib
36👍15🔥12🤯4🗿2❤‍🔥1👨‍💻1
This media is not supported in your browser
VIEW IN TELEGRAM
💥 Энергия электромагнитной волны у вас в кармане — лазер, который режет сталь

В ваших руках может находиться устройство, концентрация энергии которого сопоставима с промышленными установками всего несколько десятилетий назад. Речь о мощном импульсном лазере, способном за доли секунды прожечь дерево и разрезать лезвие канцелярского ножа. Да, этот лазер является именно импульсным. В этом и заключается его секрет. Вместо того чтобы излучать постоянный луч (как лазерная указка), он накапливает энергию в конденсаторе и высвобождает ее в виде сверхкороткого, невероятно мощного импульса. Что когда-то было громоздкой лабораторной установкой, сегодня может уместиться в кармане. Мощный импульсный лазер — триумф квантовой механики, инженерии.

▪️ Мощность в импульсе: Средняя мощность может быть невысокой (ватты), но пиковая мощность в момент импульса достигает киловатт и даже мегаватт. Это позволяет мгновенно испарять материал в точке контакта, не успев его нагреть.
▪️ Длительность импульса: Импульсы длятся наносекунды (10⁻⁹ с) или даже пикосекунды (10⁻¹² с). Именно эта кратковременность предотвращает распространение тепла и позволяет проводить "холодную" обработку — резку или гравировку без оплавления краев.

Исторически долгий путь к миниатюризации...

▪️1917: Альберт Эйнштейн теоретически предсказал явление вынужденного излучения — физическую основу лазера.
▪️1960: Теодор Майман создал первый в мире работоспособный лазер на рубиновом стержне. Устройство было громоздким и малоэффективным.
▪️1960: Теодор Майман создал первый в мире работоспособный лазер на рубиновом стержне. Устройство было громоздким и малоэффективным.

Малоизвестные факты из физики лазеров:

1. Свет, который не существует в природе. Лазерное излучение когерентно (все волны синхронны) и монохроматично (строго одной длины волны). В естественной среде такого света нет — это чисто рукотворное явление.
2. Отрицательная температура. Для создания инверсии населенностей (состояния, необходимого для работы лазера) активную среду переводят в состояние с так называемой "отрицательной температурой" по шкале Кельвина. Это не "холод", а математическое описание состояния, при котором больше частиц находится на высоком энергетическом уровне, чем на низком.
3. Фотоны-клоны. Каждый фотон в лазерном луче является точной копией другого, порожденной в процессе вынужденного излучения. По сути, луч состоит из триллионов идентичных "клонов".
4. Давление света. Лазерный луч оказывает физическое давление на объект. Для маломощных лазеров оно ничтожно, но мощные импульсные лазеры могут не только прожечь материал, но и механически сдвинуть его микрочастицы. #лазер #техника #science #физика #physics #производство #laser

🔴 Использование лазеров в быту

💥 Лазерная очистка поверхности старой монеты

💥 Лазерная резка

🔦 Лазерная сварка с разной формой луча

💥 Лазерное скальпирование микросхемы

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
68🔥49👍19😱116🤷‍♂4🆒4
📈 Изохорный (изохорический) процесс (от др.-греч. ἴσος — «равный» и χώρος — «место») — термодинамический изопроцесс, который происходит при постоянном объёме. Для осуществления изохорного процесса в газе или жидкости достаточно нагревать или охлаждать вещество в сосуде неизменного объёма. При изохорическом процессе давление идеального газа прямо пропорционально его температуре (см. Закон Шарля). В реальных газах закон Шарля выполняется приближённо.

Наиболее часто первые исследования изохорного процесса связывают с Гийомом Амонтоном. В своей работе «Парижские мемуары» в 1702 году он описал поведение газа в фиксированном объёме внутри так называемого «воздушного термометра». Жидкость в нём находится в равновесии под воздействием давления газа в резервуаре и атмосферным давлением. При нагревании давление в резервуаре увеличивается, и жидкость вытесняется в выступающую трубку. Зависимость между температурой и давлением была установлена в виде: p₁/p₂ = (1 + α⋅t₁) / (1 + α⋅t₂) .

В 1801 году Джон Дальтон в двух своих эссе опубликовал эксперимент, в котором установил, что все газы и пары, исследованные им при постоянном давлении, одинаково расширяются при изменении температуры, если начальная и конечная температура одинакова. Данный закон получил название закона Гей-Люссака, так как Гей-Люссак вскоре провёл самостоятельные эксперименты и подтвердил одинаковое расширение различных газов, причём получив практически тот же самый коэффициент, что и Дальтон. Впоследствии он же объединил свой закон с законом Бойля — Мариотта, что позволило описывать в том числе и изохорный процесс.

🔥Практическое применение: При идеальном цикле Отто, который приближённо воспроизведён в бензиновом двигателе внутреннего сгорания, такты 2—3 и 4—1 являются изохорными процессами. Работа, совершаемая на выходе двигателя, равна разности работ, которую произведёт газ над поршнем во время третьего такта (то есть рабочего хода), и работы, которую затрачивает поршень на сжатие газа во время второго такта. Так как в двигателе, работающем по циклу Отто используется система принудительного зажигания смеси, то происходит сжатие газа в 7—12 раз.
В цикле Стирлинга также присутствуют два изохорных такта. Для его осуществления в двигателе Стирлинга добавлен регенератор. Газ, проходя через наполнитель в одну сторону, отдаёт тепло от рабочего тела к регенератору, а при движении в другую сторону отдаёт его обратно рабочему телу. Идеальный цикл Стирлинга достигает обратимости и тех же величин КПД что и цикл Карно. Изохорный процесс — также процесс, протекающий в автоклавах и пьезометрах. #физика #термодинамика #опыты #мкт #теплота #нагрев #лекции #physics #science

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4126🔥17🥰2🤯2
Media is too big
VIEW IN TELEGRAM
⚙️ Помните этот пост на канале? Наверняка, у многих возникли вопросы, которые они постеснялись задать в комментариях. Поэтому сегодня мы поговорим о том, почему такие конструкции НЕ работают в реальной жизни. Разумеется, база рассуждений будет физика. Причем нам нам поможет элементарная физика. В последнее время в сети снова всплыли видео с «революционными» вечными двигателями. Устройство обычно такое: тяжелый маховик, а к его валу подключены несколько пружин, которые, якобы, своим распрямлением постоянно раскручивают систему. Выглядит захватывающе, но это обман. Давайте разберемся, почему это не работает. А пока задам вам вопрос: с чего мы взяли, что энергия, запасенная в сжатой пружине, бесконечна?

Вся магия вечных двигателей рушится на фундаментальном уравнении вращательного движения: J · ε = M , где
J — момент инерции маховика (его «нежелание» раскручиваться или инертность. Это аналог массы во втором законе Ньютона, из которого и выводится закон выше).
ε (эпсилон) — угловое ускорение (оно должно быть отлично от нуля, если двигатель раскручивается или оно может быть равным 0, если система вышла на постоянную скорость вращения).
M — суммарный момент сил, приложенных к системе.

Вот в чём подвох: в такой системе пружины создают силы, направленные в разные стороны. Когда одна пружина пытается раскрутить маховик по часовой стрелке, другая в этот же момент пытается крутить его против. Просто сделайте рисунок с торца такого двигателя. Получится, что алгебраическая сумма моментов всех сил (n сил для n пружин) равна нулю. Подставляем это в наше уравнение: J · ε = 0. Момент инерции J — величина не нулевая (маховик-то есть). Единственный способ выполнить это равенство — сделать угловое ускорение ε равным нулю. Вывод: система не может раскрутиться сама по себе.

Но в чем же подвох на видео? Всё довольно банально:
1. Скрытый источник энергии. Часто в кадр не попадает электромоторчик, спрятанный внутри вала или основания, который и раскручивает маховик.
2. Однократный запуск. Устройство раскручивают вручную, снимают фазу «последнего затухающего колебания», а потом видео зацикливают, создавая иллюзию непрерывного движения.
3. Хитрые ракурсы. Камера не показывает полный цикл работы всех пружин, чтобы зритель не увидел момент, когда они мешают, а не помогают движению.

Как бы вы не хотели изобрести вечный двигатель, вам стоит помнить, что закон сохранения (изменения) энергии работает всегда. Если есть диссипативные силы, то полная энергия системы убывает. И вы не сможете сделать вечный двигатель без пополнения энергией извне (но тогда это уже не вечный двигатель). #задачи #опыты #электродинамика #физика #видеоуроки #fun #physics #science #наука #двигатели #вечныйдвигатель

🔔 Оксфордский электрический звонок: самый долгий научный эксперимент в мире, длящийся с 1840 года

⚡️ Вечный электромагнитный двигатель

😨 Запрещенный генератор свободной энергии с использованием метода якоря

⚡️ Генератор Постоянного Движения

🔧 Картонный вентилятор

🧲 Магнитный двигатель

💦 Фонтан Герона

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4030🔥9🤯3😱2
Media is too big
VIEW IN TELEGRAM
🔥 Термическое расширение тел

При проектировании любых конструкций — от железнодорожных путей до микрочипов — инженеры обязаны учитывать фундаментальное физическое явление: термическое расширение. Почему металлический шарик при нагреве перестаёт проходить через кольцо? Нагреваясь, металлический шарик расширяется, и его объём увеличивается. Это происходит из-за изменения характера тепловых колебаний атомов в кристаллической решётке металла.

#️⃣ Что происходит с кристаллической решёткой?
1. В нормальном состоянии атомы в узлах решётки совершают хаотические колебания вокруг положения равновесия.
2. При нагреве кинетическая энергия атомов возрастает.
3. Амплитуда колебаний атомов значительно увеличивается.
4. Среднее расстояние между атомами растёт, что и приводит к увеличению размера всего макроскопического тела.

Проще говоря, «тепловое дрожание» атомов становится более интенсивным, и они вынуждены отодвигаться друг от друга, занимая больше пространства.

Существуют ли тела, которые сжимаются при нагреве?

Да, такое явление называется аномальное термическое расширение. Оно наблюдается у некоторых материалов в определённых температурных диапазонах.
Классический пример — вода. При нагреве от 0°C до 4°C её объём не увеличивается, а уменьшается. Плотность воды при 4°C максимальна.

Среди твёрдых тел аналогичным поведением обладают:

1. Кремний и германий при очень низких температурах.
2. Сплавы с «эффектом памяти» (например, нитинол).
3. Некоторые виды керамик и цирконий-вольфрамат.
4. Обычный лёд при температуре, близкой к точке плавления.

Малоизвестные факты:

1. Инвар — сплав железа (64%) и никеля (36%), обладающий практически нулевым коэффициентом теплового расширения. Он используется в прецизионных приборах, эталонных мерках длины и деталях космических аппаратов.

2. Относительность расширения. При одинаковом нагреве алюминиевый стержень расширится примерно в два раза сильнее, чем железный. Это критически важно при создании биметаллических элементов (например, в термостатах).

3. Расширение Вселенной. В некоторой аналогии, метрическое расширение Вселенной описывается уравнениями, имеющими сходство с формулами теплового расширения, хотя природа этого явления совершенно иная.

Термическое расширение — не просто лабораторный феномен, а мощная сила, которую необходимо учитывать. Оно наглядно демонстрирует прямую связь между макромиром, который мы видим, и микромиром атомных взаимодействий.
#термодинамика #мкт #химия #физика #наука #микромир #опыты #physics #эксперименты #science

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5218🔥11🤝5🤔3❤‍🔥2
This media is not supported in your browser
VIEW IN TELEGRAM
⚙️ Когда пресс бессилен: охлаждение детали для ремонта в машиностроении ❄️

Вчера был пост про 🔥 Термическое расширение тел. Это же свойство используется на производстве. Представьте: у вас есть массивная стальная втулка и отверстие, в которое она должна быть установлена с огромным натягом. Зазор — микронный. Гидравлический пресс только пожимает плечами. Что делать? Греть отверстие? Классика. Но есть и более изящный, «холодный» метод. Решение — жидкий азот.

▪️ Принцип прост: При охлаждении до -196°C большинство металлов ощутимо сжимаются (коэффициент термического расширения работает в обе стороны).
▪️ Процесс: Деталь погружают в жидкий азот. Она «усыхает» на несколько сотых миллиметра — и этого достаточно.
▪️ Монтаж: Быстро, пока деталь холодная, её практически вручную устанавливают в отверстие.
▪️ Финал: Деталь прогревается до температуры окружающей среды и расширяется, создавая неразъемное, сверхпрочное соединение.

Основные плюсы такого метода: не повреждает покрытие, идеальная точность, иногда это единственно возможные способ. Некоторые механизмы могут быть собраны только с помощью экстремального холода.
#термодинамика #мкт #химия #физика #наука #микромир #опыты #physics #эксперименты #science #азот

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍113❤‍🔥38🔥2810🤩3🤝2💯1🆒1
📗 Начала физики [2007] Павленко Ю.Г.

💾 Скачать книгу

Кому подойдет эта книга:
▪️Учащимся физико-математических лицеев и гимназий.
▪️Абитуриентам, готовящимся к поступлению в ведущие технические и естественнонаучные вузы (МФТИ, МГУ, НГУ и др.).
▪️Студентам младших курсов для закрепления и углубления школьной программы.
▪️Преподавателям физики в качестве источника сложных и интересных задач.

Кому не подойдет:
▫️Новичкам, только начинающим изучать физику.
▫️Учащимся, которым нужен упрощенный или «разжеванный» подход.
▫️Тем, кто готовится к стандартному школьному ЕГЭ без цели углубления (хотя для части «С» она очень полезна).

☕️ Кто захочет задонать на кофе: ВТБ: +79616572047 (СБП)

📚Книжная серия. Курс общей физики [2007-2020] Иродов, Покровский

📚 Сборник задач по общему курсу физики [3 книги] [1998-2000]

📚 Курс общей физики в 5 томах [2021] Савельев И.В.

📚 Наука. Величайшие теории [50 выпусков] + Спец. выпуск

📚 Курс теоретической физики [2 тома] [1972] А. С. Компанеец

#физика #математика #задачи #геометрия #physics #math #science #наука #подборка_книг

💡 Physics.Math.Code // @physics_lib
🔥3719👍12😍32🤩1