🔥 7 видео, которые рассказывают о работе классического теплового двигателя 💨⚙️
Тепловой двигатель — тепловая машина, использующая теплоту от внешних источников (двигатель внешнего сгорания) или получаемую при сгорании топлива внутри двигателя (в камере сгорания или цилиндрах двигателя внутреннего сгорания) для преобразования в механическую энергию (поступательное движение либо вращение выходного вала).
В соответствии с законами термодинамики, такие двигатели имеют коэффициент полезного действия меньше единицы, что означает неполное преобразование теплоты в механическую энергию. Смотря по конструкции двигателя, от 40 % до 80 процентов поступающей (или выделяющейся внутри) энергии покидает машину в виде низкотемпературной теплоты, которая в ряде случаев используется для обогрева салона машины.
Тепловые двигатели внешнего сгорания — Такие двигатели получили распространение раньше, ввиду неприхотливости к виду топлива, более простому устройству, ненужности в ранних вариантах (паровая машина) систем запуска, зажигания, охлаждения. Дали мощный импульс индустриализации, поскольку с их помощью были механизированы шахты, швейные и другие фабрики, затем транспорт (железная дорога). Улучшенные новые схемы таких двигателей обеспечивают мир большей частью вырабатываемой электроэнергии (ТЭС, АЭС, ТЭЦ, солнечные электростанции с нагревом котла). Новейшие модели паровозов до сих пор имеют применение ввиду простоты и потреблению древесной пыли в качестве топлива. Некоторые (двигатель Стирлинга) получили применение в космических кораблях.
💡 Physics.Math.Code // @physics_lib
Тепловой двигатель — тепловая машина, использующая теплоту от внешних источников (двигатель внешнего сгорания) или получаемую при сгорании топлива внутри двигателя (в камере сгорания или цилиндрах двигателя внутреннего сгорания) для преобразования в механическую энергию (поступательное движение либо вращение выходного вала).
В соответствии с законами термодинамики, такие двигатели имеют коэффициент полезного действия меньше единицы, что означает неполное преобразование теплоты в механическую энергию. Смотря по конструкции двигателя, от 40 % до 80 процентов поступающей (или выделяющейся внутри) энергии покидает машину в виде низкотемпературной теплоты, которая в ряде случаев используется для обогрева салона машины.
Тепловые двигатели внешнего сгорания — Такие двигатели получили распространение раньше, ввиду неприхотливости к виду топлива, более простому устройству, ненужности в ранних вариантах (паровая машина) систем запуска, зажигания, охлаждения. Дали мощный импульс индустриализации, поскольку с их помощью были механизированы шахты, швейные и другие фабрики, затем транспорт (железная дорога). Улучшенные новые схемы таких двигателей обеспечивают мир большей частью вырабатываемой электроэнергии (ТЭС, АЭС, ТЭЦ, солнечные электростанции с нагревом котла). Новейшие модели паровозов до сих пор имеют применение ввиду простоты и потреблению древесной пыли в качестве топлива. Некоторые (двигатель Стирлинга) получили применение в космических кораблях.
💡 Physics.Math.Code // @physics_lib
👍84🔥14❤5❤🔥3😍2
📚 Книги по физике — автор Джей Орир
💾 Скачать книги
Джей Орир (Jay Orear) — американский физик-экспериментатор, ученик Энрико Ферми, унаследовавший от своего учителя замечательную способность объяснять сложные вещи простыми словами. Вот что сам он пишет в предисловии к своей книге: «Я в неоплатном долгу перед Энрико Ферми, который не только сообщил мне большую часть моих познаний по физике, но и научил методам ее изучения. Как преподаватель Ферми был хорошо известен своей замечательной способностью предельно просто и ясно излагать самые трудные вопросы. Он достигал этого прямым путем, очень мало прибегая к математике и обращая основное внимание на физическую сущность явлений. В этой книге я пытался передать характер и увлекательность физики так, как это мог бы сделать Ферми». Можно без преувеличения сказать, что автору это удалось в полной мере. #физика #physics #подборка_книг #наука #science
💡 Physics.Math.Code // @physics_lib
💾 Скачать книги
Джей Орир (Jay Orear) — американский физик-экспериментатор, ученик Энрико Ферми, унаследовавший от своего учителя замечательную способность объяснять сложные вещи простыми словами. Вот что сам он пишет в предисловии к своей книге: «Я в неоплатном долгу перед Энрико Ферми, который не только сообщил мне большую часть моих познаний по физике, но и научил методам ее изучения. Как преподаватель Ферми был хорошо известен своей замечательной способностью предельно просто и ясно излагать самые трудные вопросы. Он достигал этого прямым путем, очень мало прибегая к математике и обращая основное внимание на физическую сущность явлений. В этой книге я пытался передать характер и увлекательность физики так, как это мог бы сделать Ферми». Можно без преувеличения сказать, что автору это удалось в полной мере. #физика #physics #подборка_книг #наука #science
💡 Physics.Math.Code // @physics_lib
👍58❤9🔥9😍4🤯2❤🔥1🆒1
Книги по физике - автор Джей Орир .zip
152.6 MB
📚 Книги по физике — автор Джей Орир
📚 Физика [2 тома] [1981] Орир Дж
📕 Физика [том 1] [1981] Орир Дж
📕 Физика [том 2] [1981] Орир Дж
📘 Физика. Полный курс примеры, задачи, решения [2010] Орир Дж.
📗 Популярная физика [1964] Орир Дж
Книга известного физика из США Дж. Орира представляет собой один из наиболее удачных в мировой литературе вводных курсов по физике, охватывающих диапазон от физики как школьного предмета до доступного описания ее последних достижений. Эта книга занимает почетное место на книжной полке уже нескольких поколений российских физиков, причем для данного издания книга существенно дополнена и осовременена.
Автор книги - ученик выдающегося физика ХХ века, Нобелевского лауреата Э. Ферми - в течение многих лет читал свой курс студентам Корнельекого университета. Этот курс может служить полезным практическим введением к широко известным в России «Фейнмановским лекциям по физике» и «Берклиевскому курсу физики». #физика #physics #подборка_книг #наука #science
💡 Physics.Math.Code // @physics_lib
📚 Физика [2 тома] [1981] Орир Дж
📕 Физика [том 1] [1981] Орир Дж
📕 Физика [том 2] [1981] Орир Дж
📘 Физика. Полный курс примеры, задачи, решения [2010] Орир Дж.
📗 Популярная физика [1964] Орир Дж
Книга известного физика из США Дж. Орира представляет собой один из наиболее удачных в мировой литературе вводных курсов по физике, охватывающих диапазон от физики как школьного предмета до доступного описания ее последних достижений. Эта книга занимает почетное место на книжной полке уже нескольких поколений российских физиков, причем для данного издания книга существенно дополнена и осовременена.
Автор книги - ученик выдающегося физика ХХ века, Нобелевского лауреата Э. Ферми - в течение многих лет читал свой курс студентам Корнельекого университета. Этот курс может служить полезным практическим введением к широко известным в России «Фейнмановским лекциям по физике» и «Берклиевскому курсу физики». #физика #physics #подборка_книг #наука #science
💡 Physics.Math.Code // @physics_lib
👍79❤12🔥5😍5⚡4❤🔥2
This media is not supported in your browser
VIEW IN TELEGRAM
Гироскоп (от др.-греч. γῦρος «круг» + σκοπέω «смотрю») — устройство, способное реагировать на изменение углов ориентации тела, на котором оно установлено, относительно инерциальной системы отсчёта. Простейший пример гироскопа — юла (волчок). Термин впервые введен Ж. Фуко в своём докладе в 1852 году во Французской академии наук. Доклад был посвящён способам экспериментального обнаружения вращения Земли в инерциальном пространстве. Этим и обусловлено название «гироскоп». #научные_фильмы #физика #механика #теоретическая_механика #термех #physics #видеоуроки #наука
Антигравитационное колесо ⚙️
📷 Как работает оптическая стабилизация изображения в камере смартфона.
🖲 Датчики следящих систем. 1985 год. КиевНаучФильм
⚙️ Гироскоп и его применение [1979]
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍101❤11🔥8😍5⚡3✍1👏1
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Виды паргелиев:
▪️ 22° паргелии — один из самых распространенных элементов гало. Выглядят как два ярких радужных пятна на высоте солнца, примерно на том же расстоянии от солнца, что и малое гало (22°);
▪️ вторичные паргелии — при наличии кристаллов в виде толстых ледяных пластинок яркие 22° паргелии могут создать свои ложные солнца (они будут располагаться уже на расстоянии 44° от солнца);
▪️ 120° паргелии — выглядят как точки на паргелическом круге на расстоянии 120° от солнца;
▪️ паргелии Лилеквиста — утолщения на паргелическом круге на расстоянии 150—160° от солнца;
▪️ антигелий — на расстоянии 180° от солнца.
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍55😍26🔥15❤9❤🔥4🤔2
Изобретена шотландским физиком Чарлзом Вильсоном между 1910 и 1912 г. Принцип действия камеры использует явление конденсации перенасыщенного пара: при появлении в среде перенасыщенного пара каких-либо центров конденсации (в частности ионов, сопровождающих след быстрой заряженной частицы) на них образуются мелкие капли жидкости. Эти капли достигают значительных размеров и могут быть сфотографированы. Источник исследуемых частиц может располагаться либо внутри камеры, либо вне её (в этом случае частицы залетают через прозрачное для них окно).
В 1927 г. советские физики П. Л. Капица и Д. В. Скобельцын предложили помещать камеру в сильное магнитное поле, искривляющее треки, для исследования количественных характеристик частиц (например, массы и скорости).
Камера Вильсона представляет собой ёмкость со стеклянной крышкой и поршнем в нижней части, заполненную насыщенными парами воды, спирта или эфира. Пары тщательно очищены от пыли, чтобы до пролёта частиц у молекул воды не было центров конденсации. Когда поршень опускается, то за счёт адиабатического расширения пары охлаждаются и становятся перенасыщенными. Заряженная частица, проходя сквозь камеру, оставляет на своём пути цепочку ионов. Пар конденсируется на ионах, делая видимым след частицы.
Камера Вильсона сыграла огромную роль в изучении строения вещества. На протяжении нескольких десятилетий она оставалась практически единственным инструментом для визуального исследования ядерных излучений и исследования космических лучей.
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍103🔥19❤6⚡5❤🔥4😍3🤯2✍1
Media is too big
VIEW IN TELEGRAM
Если воздушный пузырь всплывает в воде под действием архимедовой силы, то к чему эта сила приложена? Неужели к воздуху, который находится внутри пузыря? Но как такое может быть, если у пузыря нет оболочки? И к чему приложена уравновешивающая сила сопротивления водной среды?
А вот вам ещё интересная задача про пузыри: ✏️ Школьная задача по физике (гидростатике), которую не каждый решит
#задачи #опыты #разбор_задач #физика #видеоуроки #научные_фильмы #physics
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍56🔥5❤4🤔1🤯1😍1
❓ Физики решили парадокс Леонардо, описавшего странное движение пузырьков
Некоторые пузырьки поднимаются к поверхности воды не по прямой, а по спирали. Леонардо да Винчи обнаружил этот странный феномен больше 500 лет назад, но объяснить его удалось только теперь. В гидродинамике парадоксом Леонардо называют странное поведение пузырьков, поднимающихся в воде. Еще около 500 лет назад великий итальянец заметил, что тогда как большинство пузырьков устремляется снизу прямо к поверхности, некоторые из них начинают колебаться и поднимаются вверх по спирали. Он сделал набросок такого движения, который дошел до нашего времени в тетради заметок, известной как Лестерский кодекс. До сегодняшнего дня сохранилась и загадка парадокса Леонардо.
Наблюдения подтверждают, что достаточно мелкие — менее миллиметра в диаметре — пузырьки поднимаются в воде более-менее по прямой, тогда как более крупные колеблются из стороны в сторону, двигаясь по спиральной траектории. Мигель Геррада (Miguel Herrada) из Севильского университета и Йенс Эггерс (Jens Eggers) из Бристольского университета провели новые расчеты и показали, что критический размер составляет 0,926 миллиметра. Если диаметр пузырька превышает эту величину, он становится нестабильным и теряет ровную сферическую форму. На его поверхности появляются участки с большим и меньшим изгибом. Там, где изгиб больше, вода обтекает пузырек быстрее, а значит, ее давление оказывается ниже, заставляя пузырек смещаться вбок. Одновременно то же понижение давления позволяет сильно изогнутому участку восстановить форму и слегка «округлиться».
Однако, оставаясь нестабильным, он снова деформируется, и весь процесс повторяется снова, создавая периодические колебания из стороны в сторону. Как пишут авторы, при превышении критических размеров «пузырек деформируется в ответ на силы, действующие на него со стороны воды, и наоборот, форма пузырька меняет характеристики течения воды вокруг него». Пузырьки, образующиеся и движущиеся в жидкости, сопровождают целый ряд природных явлений и активно применяются в промышленности. Понимание их свойств позволит лучше разобраться в естественных процессах и оптимизировать некоторые этапы производства. #парадоксы #опыты #разбор_задач #физика #гидродинамика #жидкости #physics
💡 Physics.Math.Code // @physics_lib
Некоторые пузырьки поднимаются к поверхности воды не по прямой, а по спирали. Леонардо да Винчи обнаружил этот странный феномен больше 500 лет назад, но объяснить его удалось только теперь. В гидродинамике парадоксом Леонардо называют странное поведение пузырьков, поднимающихся в воде. Еще около 500 лет назад великий итальянец заметил, что тогда как большинство пузырьков устремляется снизу прямо к поверхности, некоторые из них начинают колебаться и поднимаются вверх по спирали. Он сделал набросок такого движения, который дошел до нашего времени в тетради заметок, известной как Лестерский кодекс. До сегодняшнего дня сохранилась и загадка парадокса Леонардо.
Наблюдения подтверждают, что достаточно мелкие — менее миллиметра в диаметре — пузырьки поднимаются в воде более-менее по прямой, тогда как более крупные колеблются из стороны в сторону, двигаясь по спиральной траектории. Мигель Геррада (Miguel Herrada) из Севильского университета и Йенс Эггерс (Jens Eggers) из Бристольского университета провели новые расчеты и показали, что критический размер составляет 0,926 миллиметра. Если диаметр пузырька превышает эту величину, он становится нестабильным и теряет ровную сферическую форму. На его поверхности появляются участки с большим и меньшим изгибом. Там, где изгиб больше, вода обтекает пузырек быстрее, а значит, ее давление оказывается ниже, заставляя пузырек смещаться вбок. Одновременно то же понижение давления позволяет сильно изогнутому участку восстановить форму и слегка «округлиться».
Однако, оставаясь нестабильным, он снова деформируется, и весь процесс повторяется снова, создавая периодические колебания из стороны в сторону. Как пишут авторы, при превышении критических размеров «пузырек деформируется в ответ на силы, действующие на него со стороны воды, и наоборот, форма пузырька меняет характеристики течения воды вокруг него». Пузырьки, образующиеся и движущиеся в жидкости, сопровождают целый ряд природных явлений и активно применяются в промышленности. Понимание их свойств позволит лучше разобраться в естественных процессах и оптимизировать некоторые этапы производства. #парадоксы #опыты #разбор_задач #физика #гидродинамика #жидкости #physics
💡 Physics.Math.Code // @physics_lib
👍96🫡41🔥10❤4🆒3🥰1🤯1🌚1
Media is too big
VIEW IN TELEGRAM
😨 Ну что, господа-физики, шах и мат? Не работает физика ваша?
На видео: Запрещенный генератор свободной энергии с использованием метода якоря, который способен добывать энергию из струнных колебаний Святого Эфира с помощью 6 магнитиков и медной проволоки. Магнитов должно быть обязательно 6, как подсказывает нам нумерология, ведь только так мы сможем добыть треть энергии зверя 666 и, скорее всего, Силу Земли... Смотрим.
⚠️ А теперь задача для внимательных подписчиков: Почему «работает» и в чем подвох? 😏
#задачи #опыты #электродинамика #физика #видеоуроки #fun #physics
💡 Physics.Math.Code // @physics_lib
На видео: Запрещенный генератор свободной энергии с использованием метода якоря, который способен добывать энергию из струнных колебаний Святого Эфира с помощью 6 магнитиков и медной проволоки. Магнитов должно быть обязательно 6, как подсказывает нам нумерология, ведь только так мы сможем добыть треть энергии зверя 666 и, скорее всего, Силу Земли... Смотрим.
⚠️ А теперь задача для внимательных подписчиков: Почему «работает» и в чем подвох? 😏
#задачи #опыты #электродинамика #физика #видеоуроки #fun #physics
💡 Physics.Math.Code // @physics_lib
🤨43💊37👍26🔥9🗿7❤4😱4🆒3❤🔥2🙏2👨💻1
This media is not supported in your browser
VIEW IN TELEGRAM
В невесомости жидкость принимает форму шара. Связано это с действием сил поверхностного натяжения. У шара минимальное отношение площади поверхности к объему. Поэтому поверхностное натяжение стягивает воду к этой форме. Любая другая фигура обладает большей поверхностью, а природа стремится к уменьшению силы затрачиваемой на поверхностное натяжение, к уменьшению потенциальной энергии. Обычно сила тяжести мешает жидкости принимать эту форму, и жидкость либо растекается тонким слоем, если разлита без сосуда, либо же принимает форму сосуда, если налита в него.
🟡 Вопрос для самых любознательных: Почему пузырьки воздух скапливаются на оси вращения чайного шарика ?
#задачи #опыты #разбор_задач #физика #видеоуроки #научные_фильмы #physics #gif
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍47❤11🤔4🤩3🔥2