On Artificial Intelligence
108 subscribers
27 photos
36 files
466 links
If you want to know more about Science, specially Artificial Intelligence, this is the right place for you
Admin Contact:
@Oriea
Download Telegram
Artificial Intelligence from Perspective of Philosophers

https://plato.stanford.edu/entries/artificial-intelligence/
#AI #philosophy #history
Reinforcement Learning and Optimal Control.pdf
2.7 MB
Reinforcement learning and Optimal Control (Draft version)

Desperately looking for the original version of this book. If you could find it, please let me know.
#reinforcement_learning #optimal_control
A Collection of Definitions of Intelligence

https://arxiv.org/pdf/0706.3639.pdf
#artificial_intelligence
An overview of gradient descent optimization algorithms

Abstract
: Gradient descent optimization algorithms, while increasingly popular, are often used as black-box optimizers, as practical explanations of their strengths and weaknesses are hard to come by. This article aims to provide the reader with intuitions with regard to the behaviour of different algorithms that will allow her to put them to use. In the course of this overview, we look at different variants of gradient descent, summarize challenges, introduce the most common optimization algorithms, review architectures in a parallel and distributed setting, and investigate additional strategies for optimizing gradient descent

https://arxiv.org/pdf/1609.04747.pdf
#deep_learning #optimization
What's Wrong with Artificial Intelligence: From the perspective of Prof. Richard Sutton

I
hold that AI has gone astray by neglecting its essential objective --- the turning over of responsibility for the decision-making and organization of the AI system to the AI system itself. It has become an accepted, indeed lauded, form of success in the field to exhibit a complex system that works well primarily because of some insight the designers have had into solving a particular problem. This is part of an anti-theoretic, or "engineering stance", that considers itself open to any way of solving a problem. But whatever the merits of this approach as engineering, it is not really addressing the objective of AI. For AI it is not enough merely to achieve a better system; it matters how the system was made. The reason it matters can ultimately be considered a practical one, one of scaling. An AI system too reliant on manual tuning, for example, will not be able to scale past what can be held in the heads of a few programmers. This, it seems to me, is essentially the situation we are in today in AI. Our AI systems are limited because we have failed to turn over responsibility for them to them.

Please forgive me for this which must seem a rather broad and vague criticism of AI. One way to proceed would be to detail the criticism with regard to more specific subfields or subparts of AI. But rather than narrowing the scope, let us first try to go the other way. Let us try to talk in general about the longer-term goals of AI which we can share and agree on. In broadest outlines, I think we all envision systems which can ultimately incorporate large amounts of world knowledge. This means knowing things like how to move around, what a bagel looks like, that people have feet, etc. And knowing these things just means that they can be combined flexibly, in a variety of combinations, to achieve whatever are the goals of the AI. If hungry, for example, perhaps the AI can combine its bagel recognizer with its movement knowledge, in some sense, so as to approach and consume the bagel. This is a cartoon view of AI -- as knowledge plus its flexible combination -- but it suffices as a good place to start. Note that it already places us beyond the goals of a pure performance system. We seek knowledge that can be used flexibly, i.e., in several different ways, and at least somewhat independently of its expected initial use.

With respect to this cartoon view of AI, my concern is simply with ensuring the correctness of the AI's knowledge. There is a lot of knowledge, and inevitably some of it will be incorrrect. Who is responsible for maintaining correctness, people or the machine? I think we would all agree that, as much as possible, we would like the AI system to somehow maintain its own knowledge, thus relieving us of a major burden. But it is hard to see how this might be done; easier to simply fix the knowledge ourselves. This is where we are today.

Date: November 12, 2001

https://incompleteideas.net/IncIdeas/WrongWithAI.html
#artificial_intelligence
Crafting Papers on Machine Learning

This paper provides some useful hints and advice for preparing machine learning papers. Besides, consider that it is not meant to cover all types of papers.

https://icml.cc/Conferences/2002/craft.html
#machine_learning #writing
Model-based evolutionary algorithms: a short survey

Abstract: The evolutionary algorithms (EAs) are a family of nature-inspired algorithms widely used for solving complex optimization problems. Since the operators (e.g. crossover, mutation, selection) in most traditional EAs are developed on the basis of fixed heuristic rules or strategies, they are unable to learn the structures or properties of the problems to be optimized. To equip the EAs with learning abilities, recently, various model-based evolutionary algorithms (MBEAs) have been proposed. This survey briefly reviews some representative MBEAs by considering three different motivations of using models. First, the most commonly seen motivation of using models is to estimate the distribution of the candidate solutions. Second, in evolutionary multi-objective optimization, one motivation of using models is to build the inverse models from the objective space to the decision space. Third, when solving computationally expensive problems, models can be used as surrogates of the fitness functions. Based on the review, some further discussions are also given.

https://link.springer.com/article/10.1007/s40747-018-0080-1
#evolutionary_algorithm #machine_learning
At the Interface of Algebra and Statistics

Abstract
: This thesis takes inspiration from quantum physics to investigate mathematical structure that lies at the interface of algebra and statistics. The starting point is a passage from classical probability theory to quantum probability theory. The quantum version of a probability distribution is a density operator, the quantum version of marginalizing is an operation called the partial trace, and the quantum version of a marginal probability distribution is a reduced density operator. Every joint probability distribution on a finite set can be modeled as a rank one density operator. By applying the partial trace, we obtain reduced density operators whose diagonals recover classical marginal probabilities. In general, these reduced densities will have rank higher than one, and their eigenvalues and eigenvectors will contain extra information that encodes subsystem interactions governed by statistics. We decode this information, and show it is akin to conditional probability, and then investigate the extent to which the eigenvectors capture "concepts" inherent in the original joint distribution. The theory is then illustrated with an experiment that exploits these ideas. Turning to a more theoretical application, we also discuss a preliminary framework for modeling entailment and concept hierarchy in natural language, namely, by representing expressions in the language as densities. Finally, initial inspiration for this thesis comes from formal concept analysis, which finds many striking parallels with the linear algebra. The parallels are not coincidental, and a common blueprint is found in category theory. We close with an exposition on free (co)completions and how the free-forgetful adjunctions in which they arise strongly suggest that in certain categorical contexts, the "fixed points" of a morphism with its adjoint encode interesting information.

Introductory Video: https://youtu.be/wiadG3ywJIs

Thesis: https://arxiv.org/abs/2004.05631

#statistics #machine_learning #algebra #quantum_physics
Tips for Publishing Research Code

This repository represents several important tips for releasing research code in Machine Learning (with official NeurIPS 2020 recommendations). These recommendations have been gathered based on analysis of more than 200 Machine Learning repositories, these recommendations facilitate reproducibility and correlate with GitHub stars - for more details, see our our blog post.

https://github.com/paperswithcode/releasing-research-code
#research_paper #machine_learning #neurIPS
Critique of Honda Prize for Dr. Hinton

Summary:
Hinton has made significant contributions to artificial neural networks (NNs) and deep learning, but Honda credits him for fundamental inventions of others whom he did not cite. Science must not allow corporate PR to distort the academic record. Sec. I: Modern backpropagation was created by Linnainmaa (1970), not by Rumelhart & Hinton & Williams (1985). Ivakhnenko's deep feedforward nets (since 1965) learned internal representations long before Hinton's shallower ones (1980s). Sec. II: Hinton's unsupervised pre-training for deep NNs in the 2000s was conceptually a rehash of my unsupervised pre-training for deep NNs in 1991. And it was irrelevant for the deep learning revolution of the early 2010s which was mostly based on supervised learning - twice my lab spearheaded the shift from unsupervised pre-training to pure supervised learning (1991-95 and 2006-11). Sec. III: The first superior end-to-end neural speech recognition was based on two methods from my lab: LSTM (1990s-2005) and CTC (2006). Hinton et al. (2012) still used an old hybrid approach of the 1980s and 90s, and did not compare it to the revolutionary CTC-LSTM (which was soon on most smartphones). Sec. IV: Our group at IDSIA had superior award-winning computer vision through deep learning (2011) before Hinton's (2012). Sec. V: Hanson (1990) had a variant of "dropout" long before Hinton (2012). Sec. VI: In the 2010s, most major AI-based services across the world (speech recognition, language translation, etc.) on billions of devices were mostly based on our deep learning techniques, not on Hinton's. Repeatedly, Hinton omitted references to fundamental prior art (Sec. I & II & III & V). However, as Elvis Presley put it, "Truth is like the sun. You can shut it out for a time, but it ain't goin' away."

https://people.idsia.ch/~juergen/critique-honda-prize-hinton.html
#deep_learning
The Cost of Training NLP Models: A Concise Overview

Abstract
: We review the cost of training large-scale language models, and the drivers of these costs. The intended audience includes engineers and scientists budgeting their model-training experiments, as well as non-practitioners trying to make sense of the economics of modern-day Natural Language Processing (NLP).

https://arxiv.org/abs/2004.08900
#nlp #deep_learning
Grad-CAM++: Generalized Gradient-based Visual Explanations for Deep Convolutional Networks

Abstract
: Over the last decade, Convolutional Neural Network (CNN) models have been highly successful in solving complex vision based problems. However, deep models are perceived as "black box" methods considering the lack of understanding of their internal functioning. There has been a significant recent interest to develop explainable deep learning models, and this paper is an effort in this direction. Building on a recently proposed method called Grad-CAM, we propose Grad-CAM++ to provide better visual explanations of CNN model predictions (when compared to Grad-CAM), in terms of better localization of objects as well as explaining occurrences of multiple objects of a class in a single image. We provide a mathematical explanation for the proposed method, Grad-CAM++, which uses a weighted combination of the positive partial derivatives of the last convolutional layer feature maps with respect to a specific class score as weights to generate a visual explanation for the class label under consideration. Our extensive experiments and evaluations, both subjective and objective, on standard datasets showed that Grad-CAM++ indeed provides better visual explanations for a given CNN architecture when compared to Grad-CAM.

https://arxiv.org/pdf/1710.11063.pdf
#deep_learning #computer_vision
Towards Biologically Plausible Deep Learning

Abstract
: Neuroscientists have long criticized deep learning algorithms as incompatible with current knowledge of neurobiology. We explore more biologically plausible versions of deep representation learning, focusing here mostly on unsupervised learning but developing a learning mechanism that could account for supervised, unsupervised and reinforcement learning. The starting point is that the basic learning rule believed to govern synaptic weight updates (Spike-Timing-Dependent Plasticity) arises out of a simple update rule that makes a lot of sense from a machine learning point of view and can be interpreted as gradient descent on some objective function so long as the neuronal dynamics push firing rates towards better values of the objective function (be it supervised, unsupervised, or reward-driven). The second main idea is that this corresponds to a form of the variational EM algorithm, i.e., with approximate rather than exact posteriors, implemented by neural dynamics. Another contribution of this paper is that the gradients required for updating the hidden states in the above variational interpretation can be estimated using an approximation that only requires propagating activations forward and backward, with pairs of layers learning to form a denoising auto-encoder. Finally, we extend the theory about the probabilistic interpretation of auto-encoders to justify improved sampling schemes based on the generative interpretation of denoising auto-encoders, and we validate all these ideas on generative learning tasks.

https://arxiv.org/abs/1502.04156
#deep_learning #neuroscience
The Notorious Difficulty of Comparing Human and Machine Perception

Abstract
: With the rise of machines to human-level performance in complex recognition tasks, a growing amount of work is directed towards comparing information processing in humans and machines. These works have the potential to deepen our understanding of the inner mechanisms of human perception and to improve machine learning. Drawing robust conclusions from comparison studies, however, turns out to be difficult. Here, we highlight common shortcomings that can easily lead to fragile conclusions. First, if a model does achieve high performance on a task similar to humans, its decision-making process is not necessarily human-like. Moreover, further analyses can reveal differences. Second, the performance of neural networks is sensitive to training procedures and architectural details. Thus, generalizing conclusions from specific architectures is difficult. Finally, when comparing humans and machines, equivalent experimental settings are crucial in order to identify innate differences. Addressing these shortcomings alters or refines the conclusions of studies. We show that, despite their ability to solve closed-contour tasks, our neural networks use different decision-making strategies than humans. We further show that there is no fundamental difference between same-different and spatial tasks for common feed-forward neural networks and finally, that neural networks do experience a "recognition gap" on minimal recognizable images. All in all, care has to be taken to not impose our human systematic bias when comparing human and machine perception.

https://arxiv.org/abs/2004.09406
#machine_learning
AlphaGo - The Movie | Full Documentary

Summary
: with more board configurations than there are atoms in the universe, the ancient Chinese game of Go has long been considered a grand challenge for artificial intelligence. On March 9, 2016, the worlds of Go and artificial intelligence collided in South Korea for an extraordinary best-of-five-game competition, coined The DeepMind Challenge Match. Hundreds of millions of people around the world watched as a legendary Go master took on an unproven AI challenger for the first time in history.

https://www.youtube.com/watch?v=WXuK6gekU1Y
#artificial_intelligence #reinforcement_learning #deep_learning