On Artificial Intelligence
108 subscribers
27 photos
36 files
466 links
If you want to know more about Science, specially Artificial Intelligence, this is the right place for you
Admin Contact:
@Oriea
Download Telegram
No.Starch.Python.Oct_.2015.ISBN_.1593276036.pdf
5.4 MB
Python Crash Course
A comprehensive approach to programming
šŸ with Python
āœ… For Beginners
An Overview of Recent State of the Art Deep Learning Algorithms/Architectures

Lecture on most recent research and developments in deep learning, and hopes for 2020. This is not intended to be a list of SOTA benchmark results, but rather a set of highlights of machine learning and AI innovations and progress in academia, industry, and society in general. This lecture is part of the MIT Deep Learning Lecture Series.

https://www.youtube.com/watch?v=0VH1Lim8gL8&t=999s
#deep_learning #artificial_intelligence
Neural Architecture Search for Transformers

In summary, they employed an evolutionary algorithm, with a novel encoding scheme, to search for an optimal transformer architecture.

https://www.youtube.com/watch?v=khA-fiC1Wa0&feature=youtu.be
Book: The SOAR Cognitive Architecture

Introduction:
in development for thirty years, Soar is a general cognitive architecture that integrates knowledge-intensive reasoning, reactive execution, hierarchical reasoning, planning, and learning from experience, with the goal of creating a general computational system that has the same cognitive abilities as humans. In contrast, most AI systems are designed to solve only one type of problem, such as playing chess, searching the Internet, or scheduling aircraft departures. Soar is both a software system for agent development and a theory of what computational structures are necessary to support human-level agents. Over the years, both software system and theory have evolved. This book offers the definitive presentation of Soar from theoretical and practical perspectives, providing comprehensive descriptions of fundamental aspects and new components. The current version of Soar features major extensions, adding reinforcement learning, semantic memory, episodic memory, mental imagery, and an appraisal-based model of emotion. This book describes details of Soar's component memories and processes and offers demonstrations of individual components, components working in combination, and real-world applications. Beyond these functional considerations, the book also proposes requirements for general cognitive architectures and explicitly evaluates how well Soar meets those requirements.

https://dl.acm.org/doi/book/10.5555/2222503
#cognitive_science #neuroscience #reinforcement_learning #artificial_intelligence
Artificial Intelligence from Perspective of Philosophers

https://plato.stanford.edu/entries/artificial-intelligence/
#AI #philosophy #history
Reinforcement Learning and Optimal Control.pdf
2.7 MB
Reinforcement learning and Optimal Control (Draft version)

Desperately looking for the original version of this book. If you could find it, please let me know.
#reinforcement_learning #optimal_control
A Collection of Definitions of Intelligence

https://arxiv.org/pdf/0706.3639.pdf
#artificial_intelligence
An overview of gradient descent optimization algorithms

Abstract
: Gradient descent optimization algorithms, while increasingly popular, are often used as black-box optimizers, as practical explanations of their strengths and weaknesses are hard to come by. This article aims to provide the reader with intuitions with regard to the behaviour of different algorithms that will allow her to put them to use. In the course of this overview, we look at different variants of gradient descent, summarize challenges, introduce the most common optimization algorithms, review architectures in a parallel and distributed setting, and investigate additional strategies for optimizing gradient descent

https://arxiv.org/pdf/1609.04747.pdf
#deep_learning #optimization
What's Wrong with Artificial Intelligence: From the perspective of Prof. Richard Sutton

I
hold that AI has gone astray by neglecting its essential objective --- the turning over of responsibility for the decision-making and organization of the AI system to the AI system itself. It has become an accepted, indeed lauded, form of success in the field to exhibit a complex system that works well primarily because of some insight the designers have had into solving a particular problem. This is part of an anti-theoretic, or "engineering stance", that considers itself open to any way of solving a problem. But whatever the merits of this approach as engineering, it is not really addressing the objective of AI. For AI it is not enough merely to achieve a better system; it matters how the system was made. The reason it matters can ultimately be considered a practical one, one of scaling. An AI system too reliant on manual tuning, for example, will not be able to scale past what can be held in the heads of a few programmers. This, it seems to me, is essentially the situation we are in today in AI. Our AI systems are limited because we have failed to turn over responsibility for them to them.

Please forgive me for this which must seem a rather broad and vague criticism of AI. One way to proceed would be to detail the criticism with regard to more specific subfields or subparts of AI. But rather than narrowing the scope, let us first try to go the other way. Let us try to talk in general about the longer-term goals of AI which we can share and agree on. In broadest outlines, I think we all envision systems which can ultimately incorporate large amounts of world knowledge. This means knowing things like how to move around, what a bagel looks like, that people have feet, etc. And knowing these things just means that they can be combined flexibly, in a variety of combinations, to achieve whatever are the goals of the AI. If hungry, for example, perhaps the AI can combine its bagel recognizer with its movement knowledge, in some sense, so as to approach and consume the bagel. This is a cartoon view of AI -- as knowledge plus its flexible combination -- but it suffices as a good place to start. Note that it already places us beyond the goals of a pure performance system. We seek knowledge that can be used flexibly, i.e., in several different ways, and at least somewhat independently of its expected initial use.

With respect to this cartoon view of AI, my concern is simply with ensuring the correctness of the AI's knowledge. There is a lot of knowledge, and inevitably some of it will be incorrrect. Who is responsible for maintaining correctness, people or the machine? I think we would all agree that, as much as possible, we would like the AI system to somehow maintain its own knowledge, thus relieving us of a major burden. But it is hard to see how this might be done; easier to simply fix the knowledge ourselves. This is where we are today.

Date: November 12, 2001

https://incompleteideas.net/IncIdeas/WrongWithAI.html
#artificial_intelligence