An End-to-End Transformer Model for 3D Object Detection (Facebook AI)
Фэйсбук продолжает свой курс на метавселенные. Выпустили 3DETR (3D DEtection TRansformer) - это трансформер для 3D детекции. 3DETR достигает сравнимой или лучшей производительности, чем методы 3D детекции, такие как VoteNet. Кодер также может быть использован для других 3D-задач, таких как классификация форм.
Статя
Проект
Код
#3d #transformer #detection
Фэйсбук продолжает свой курс на метавселенные. Выпустили 3DETR (3D DEtection TRansformer) - это трансформер для 3D детекции. 3DETR достигает сравнимой или лучшей производительности, чем методы 3D детекции, такие как VoteNet. Кодер также может быть использован для других 3D-задач, таких как классификация форм.
Статя
Проект
Код
#3d #transformer #detection
MPIRE, сокращение от MultiProcessing Is Really Easy, - библиотека для мультипроцессинга, но только быстрее (сильно быстрее). Сочетает в себе удобные map-подобные функции
Код
Документация
#python #parallel
multiprocessing.Pool
с преимуществами использования общих объектов multiprocessing.Process
, а также простую в использовании функциональность состояния воркера и прогресс бар tqdm.Код
Документация
#python #parallel
Список ближайших конференций по машинному обучению со временем подачи статей и датами проведения. Отранжированы по импакт-фактору (насколько хорошо цитируются опубликованные на конференции статьи)
👉 Список
👉 Список
Forwarded from Small Data Science for Russian Adventurers
#обзор
Разные виды dropout-a по годам появления. Картинка из обзорной статьи https://arxiv.org/pdf/1904.13310.pdf
Разные виды dropout-a по годам появления. Картинка из обзорной статьи https://arxiv.org/pdf/1904.13310.pdf
AI для Всех
Хорошая картинка в лекцию по dropout на тему "много их"
R-Drop: Regularized Dropout for Neural Networks
Развивая тему дропаутов - расскажу про ещё один.
В работе представляют простую стратегию регуляризации при дропауте в обучении модели, а именно R-Drop, которая заставляет выходные распределения различных подмоделей, сгенерированных при дропауте, быть согласованными друг с другом. В частности, для каждой обучающей выборки R-Drop минимизирует двунаправленное KL-расхождение между выходными распределениями двух подмоделей, отобранных при дропауте.
Статья
Код
#training
Развивая тему дропаутов - расскажу про ещё один.
В работе представляют простую стратегию регуляризации при дропауте в обучении модели, а именно R-Drop, которая заставляет выходные распределения различных подмоделей, сгенерированных при дропауте, быть согласованными друг с другом. В частности, для каждой обучающей выборки R-Drop минимизирует двунаправленное KL-расхождение между выходными распределениями двух подмоделей, отобранных при дропауте.
Статья
Код
#training
Altair
Существует множество библиотек визуализации на языке python, но altair предлагает несколько оригинальных возможностей. Она предлагает широкий выбор графиков, грамматически понятный api, множество интерактивных функций и возможность экспорта непосредственно в браузер.
Нашёл отличный туториал (коротко, с видео и со вкусом)
#plotting #python #basics
Существует множество библиотек визуализации на языке python, но altair предлагает несколько оригинальных возможностей. Она предлагает широкий выбор графиков, грамматически понятный api, множество интерактивных функций и возможность экспорта непосредственно в браузер.
Нашёл отличный туториал (коротко, с видео и со вкусом)
#plotting #python #basics
Лекция по дифференцируемым физическим симуляциям для DL 22 сентября: https://www.physicsmeetsml.org/posts/sem_2021_09_22/
Sparse MLP for Image Recognition: Is Self-Attention Really Necessary?
В этой работе авторы исследуют, является ли основной модуль self-attention в трансформере ключом к достижению превосходных результатов в распознавании изображений. Для этого они строят сеть без внимания на основе MLP.
Для лексем двумерного изображения sMLP применяет одномерную MLP вдоль осевых направлений, а параметры разделяются между строками или столбцами. Благодаря разреженному соединению и разделению веса, модуль sMLP значительно сокращает количество параметров модели и вычислительную сложность. Успех sMLPNet говорит о том, что механизм self-attention не обязательно является серебряной пулей в компьютерном зрении.
📎 Статья
🖥 Код
#mlp #transformer
В этой работе авторы исследуют, является ли основной модуль self-attention в трансформере ключом к достижению превосходных результатов в распознавании изображений. Для этого они строят сеть без внимания на основе MLP.
Для лексем двумерного изображения sMLP применяет одномерную MLP вдоль осевых направлений, а параметры разделяются между строками или столбцами. Благодаря разреженному соединению и разделению веса, модуль sMLP значительно сокращает количество параметров модели и вычислительную сложность. Успех sMLPNet говорит о том, что механизм self-attention не обязательно является серебряной пулей в компьютерном зрении.
📎 Статья
🖥 Код
#mlp #transformer
Forwarded from Мишин Лернинг 🇺🇦🇮🇱
🌄 Новый GAN от Facebook Research IC-GAN: Instance-Conditioned GAN
Новый conditional GAN (instance-conditioned), да ещё в бонус к нему нативно прикрутили CLIP, дабы zero-shot’ил по-честному, а не только по классам генерил свой мультимодальный перевод.
GAN есть, код есть, CLIP сами прикрутили, и даже colab есть. А что это значит? Значит, что fb красавцы. Го тестить сеть? Сравним с biggan и diffusion.
📰 paper 💻 git 🔮colab
Новый conditional GAN (instance-conditioned), да ещё в бонус к нему нативно прикрутили CLIP, дабы zero-shot’ил по-честному, а не только по классам генерил свой мультимодальный перевод.
GAN есть, код есть, CLIP сами прикрутили, и даже colab есть. А что это значит? Значит, что fb красавцы. Го тестить сеть? Сравним с biggan и diffusion.
📰 paper 💻 git 🔮colab
Media is too big
VIEW IN TELEGRAM
FreeStyleGAN: Редактируемый портретный рендеринг со свободным обзором
Смотрите какую штуку забабахали французы. Успеха добиваются благодаря camera manifold и отдельному обучению малой сети для каждого лица. FSGAN предлагает первый действительно свободный рендеринг реалистичных лиц с интерактивной скоростью. Закидываешь лишь небольшое количество случайных фотографий в качестве входных данных и получаешь возможности редактирования, такие как изменение выражения лица или освещения.
Сайт
Статья
Код обещают в октябре
#gan
Смотрите какую штуку забабахали французы. Успеха добиваются благодаря camera manifold и отдельному обучению малой сети для каждого лица. FSGAN предлагает первый действительно свободный рендеринг реалистичных лиц с интерактивной скоростью. Закидываешь лишь небольшое количество случайных фотографий в качестве входных данных и получаешь возможности редактирования, такие как изменение выражения лица или освещения.
Сайт
Статья
Код обещают в октябре
#gan
Недавно вышла статья, в которой утверждалось, что чем крупнее модель GPT - тем более неправдивые ответы она выдает на заданые вопросы. На основании этой статьи, журналист из New York Times начал хайповать на теме: “аааа, мы знали! все эти ваши GPT до добра не доведут!”. Но только оказалось, что в статье использовался датасет, который был специальным образом сконструирован так, что бы GPT выдавала конспирологические ответы.
По этому поводу у Яника вышел отличный разгон, советую всем посмотреть!
#gpt
По этому поводу у Яника вышел отличный разгон, советую всем посмотреть!
#gpt
Merlion: A Machine Learning Library for Time Series
Salesforce представляет Merlion, библиотеку машинного обучения с открытым исходным кодом для временных рядов. Она имеет унифицированный интерфейс для многих часто используемых моделей и наборов данных для обнаружения аномалий и прогнозирования как одномерных, так и многомерных временных рядов, наряду со стандартными слоями предварительной и последующей обработки.
Цель этой библиотеки - предоставить инженерам и исследователям универсальное решение для быстрой разработки моделей для их конкретных потребностей в области временных рядов и их тестирования на различных наборах данных.
Статья
Код
#timeseries
Salesforce представляет Merlion, библиотеку машинного обучения с открытым исходным кодом для временных рядов. Она имеет унифицированный интерфейс для многих часто используемых моделей и наборов данных для обнаружения аномалий и прогнозирования как одномерных, так и многомерных временных рядов, наряду со стандартными слоями предварительной и последующей обработки.
Цель этой библиотеки - предоставить инженерам и исследователям универсальное решение для быстрой разработки моделей для их конкретных потребностей в области временных рядов и их тестирования на различных наборах данных.
Статья
Код
#timeseries
DeepMind открывает набор на стажировку. Доступны все офисы компании (от Нью-Йорка до Токио). Подаваться могут любые аспиранты с релевантным опытом.
https://deepmind.com/careers#internships
https://deepmind.com/careers#internships
This media is not supported in your browser
VIEW IN TELEGRAM
ML-модель быстро идентифицирует строения, поврежденные лесными пожарами 🔥
Эвакуация людей, пострадавших от лесных пожаров, и группы реагирования на стихийные бедствия вскоре смогут дистанционно просканировать город на предмет структурных повреждений в течение нескольких минут с помощью недавно разработанного искусственного интеллекта DamageMap.
DamageMap - это система для быстрой оценки ущерба зданий с удобным пользовательским интерфейсом для визуализации результатов. Она использует искусственный интеллект для определения поврежденных зданий после лесных пожаров с помощью аэрофотосъемки, загруженной пользователями.
Заметка на NVIdia
#ScientificML
Эвакуация людей, пострадавших от лесных пожаров, и группы реагирования на стихийные бедствия вскоре смогут дистанционно просканировать город на предмет структурных повреждений в течение нескольких минут с помощью недавно разработанного искусственного интеллекта DamageMap.
DamageMap - это система для быстрой оценки ущерба зданий с удобным пользовательским интерфейсом для визуализации результатов. Она использует искусственный интеллект для определения поврежденных зданий после лесных пожаров с помощью аэрофотосъемки, загруженной пользователями.
Заметка на NVIdia
#ScientificML
Forwarded from Data Science by ODS.ai 🦜
Summarizing Books with Human Feedback
#OpenAI fine-tuned #GPT3 to summarize books well enough to be human-readable. Main approach: recursively split text into parts and then meta-summarize summaries.
This is really important because once there will be a great summarization #SOTA we won't need editors to write posts for you. And researchers ultimatively will have some asisstance interpreting models' results.
BlogPost: https://openai.com/blog/summarizing-books/
ArXiV: https://arxiv.org/abs/2109.10862
#summarization #NLU #NLP
#OpenAI fine-tuned #GPT3 to summarize books well enough to be human-readable. Main approach: recursively split text into parts and then meta-summarize summaries.
This is really important because once there will be a great summarization #SOTA we won't need editors to write posts for you. And researchers ultimatively will have some asisstance interpreting models' results.
BlogPost: https://openai.com/blog/summarizing-books/
ArXiV: https://arxiv.org/abs/2109.10862
#summarization #NLU #NLP
Scikit-learn наконец-то 1.0
Многие из нас активно пользуются библиотекой sk-learn. Так вот, она наконец-то обновилась до 1.0. Кардинально новых фич прям много не предлагают, основная идея - наконец-то признать что sk-learn это стабильный рабочий продукт.
Посмотреть все новые плюшки можно тут
Многие из нас активно пользуются библиотекой sk-learn. Так вот, она наконец-то обновилась до 1.0. Кардинально новых фич прям много не предлагают, основная идея - наконец-то признать что sk-learn это стабильный рабочий продукт.
Посмотреть все новые плюшки можно тут