Ninja Learn | نینجا لرن
1.27K subscribers
105 photos
41 videos
12 files
326 links
یادگیری برنامه نویسی به سبک نینجا 🥷
اینجا چیزایی یاد میگیری که فقط نینجاهای وب‌ بلدن 🤫

📄 Send me post: https://t.iss.one/NoronChat_bot?start=sec-fdggghgebe

👥 ɢʀᴏᴜᴘ: https://t.iss.one/+td1EcO_YfSphNTlk
Download Telegram
تا حالا کلی مطالب خفن و کاربردی تو کانال NinjaLearn براتون آماده کردیم و الان صدها مطلب مختلف و جذاب داریم.

از اونجایی که مطالب کانال خیلی متنوع و زیاد شده، تصمیم گرفتیم یه دسته‌بندی مرتب و منظم برای همه‌ی پست‌ها داشته باشیم تا شما عزیزان راحت‌تر بتونید محتوای مورد نظرتون رو پیدا کنید

این شما و این لیست دسته‌بندی‌های کانال🔻:

🦫 #go: آموزش‌ها و نکات کاربردی زبان گو

💻 #programming: مطالب برنامه نویسی

🐍 #python: ترفندها و نکات پایتونی

🦄 #django: مطالب فریم‌ورک جنگو

⚡️ #fastapi: مطالب فریم ورک فست

🌐 #web: مطالب مرتبط به وب

📡 #network: مطالب مرتبط به شبکه

🗂️ #db: معرفی و نکات دیتابیس

🔖 #reference: معرفی مقاله و ویدیو

📢 #notif: اطلاع رسانی ها

#question: سوالات جالب در برنامه نویسی

🎊 #event: رویداد هایی که معرفی کردیم

🎬 #movie: معرفی فیلم و سریال

📚 #book: معرفی کتاب‌های تخصصی

🤖 #AI: مطالب مرتبط به هوش مصنوعی

📊 #ml: مطالب مرتبط به یادگیری ماشین

🛠️ #backend: آموزش‌ها و ترفندهای بک‌اند

🔒 #security: نکات امنیتی

#devops: مطالب مرتبط به دواپس

📺 #YouTube: ویدیوهای چنل یوتیوب ما

🌏 #geo: تکنولوژی های جغرافیایی


هر کدوم از این هشتگ‌ها برای یه موضوع خاص طراحی شده تا شما به راحتی بتونید محتوای مورد نظرتون رو پیدا کنید. دیگه لازم نیست کلی تو کانال بگردید 😊

اگه موضوع جدیدی به مطالب کانال اضافه بشه، حتماً تو این لیست قرار می‌گیره


راستی میتونید بنر کانال رو برای دوستاتون هم بفرستید تا اونا هم به جمع ما بپیوندن و از این مطالب مفید استفاده کنن 😉

NinjaLearn Banner 🥷🤝


#category



🔆 CHANNEL | GROUP
22👍1👎1🔥1
سلام علیک و از این حرفا
انواع مدل‌های هوش مصنوعی (سه تا محبوب ترین ها)🧠


امروز می‌خوام درباره انواع مدل‌های یادگیری ماشین صحبت کنم اگه تازه وارد دنیای AI شدین یا می‌خواین یه شناخت کلی داشته باشین، این پست براتون مناسبه. قراره سه مدل اصلی یادگیری ماشین رو بررسی کنیم: با نظارت (Supervised)، بدون نظارت (Unsupervised) و تقویتی (Reinforcement).

🧠 یادگیری ماشین چیه؟
قبل از اینکه بریم سراغ انواع مدل‌ها، یه توضیح سریع بدم. یادگیری ماشین (Machine Learning) یه شاخه از هوش مصنوعیه که به کامپیوترها یاد می‌دیم از داده‌ها یاد بگیرن و تصمیم بگیرن، بدون اینکه صریحاً برنامه‌ریزی بشن. حالا این یادگیری به چند روش انجام می‌شه که هر کدوم کاربرد خاص خودشون رو دارن.


1⃣ یادگیری با نظارت (Supervised Learning) 👨‍🏫
تو این روش، مدل با یه مجموعه داده برچسب‌دار آموزش می‌بینه. یعنی هر داده یه ورودی (مثل تصویر یا عدد) و یه خروجی مشخص (مثل اسم یا دسته‌بندی) داره. مدل یاد می‌گیره که ورودی‌ها رو به خروجی‌های درست وصل کنه.

فرض کن داری به مدل یاد می‌دی که سگ و گربه رو از هم تشخیص بده. بهش یه عالمه عکس سگ و گربه می‌دی که روشون نوشته "سگ" یا "گربه". مدل از این داده‌ها الگو پیدا می‌کنه و بعداً می‌تونه عکس‌های جدید رو دسته‌بندی کنه.
کاربردها:
دسته‌بندی (Classification): مثلاً تشخیص اسپم ایمیل (اسپمه یا نه؟).

رگرسیون (Regression):
مثل پیش‌بینی قیمت خونه.

مزایا:
دقیق، قابل‌فهم، برای مسائل مشخص عالیه.

معایب:
نیاز به داده برچسب‌دار داره که جمع‌آوری و برچسب‌زنی‌اش می‌تونه گرون و زمان‌بر باشه.

2⃣ یادگیری بدون نظارت (Unsupervised Learning) 🕵️
اینجا داده‌ها برچسب ندارن مدل باید خودش از داده‌ها الگو یا ساختار پیدا کنه.

فرض کن یه عالمه داده فروش مشتری‌ها داری، ولی نمی‌دونی کدوم مشتری تو چه گروهیه. مدل بدون نظارت می‌تونه مشتری‌ها رو بر اساس رفتارشون (مثلاً خریدهای مشابه) گروه‌بندی کنه (مثلا گروه های لوازم خانگی یا گروه مواد غذایی).

کاربردها:
خوشه‌بندی (Clustering):
مثل گروه‌بندی مشتری‌ها برای بازاریابی.

کاهش ابعاد (Dimensionality Reduction):
مثل ساده‌سازی داده‌های پیچیده برای تحلیل.

مزایا:
نیازی به برچسب نداره، برای داده‌های بزرگ و ناشناخته عالیه.

معایب:
نتایجش گاهی مبهمه و نیاز به تحلیل بیشتر داره.

3⃣ یادگیری تقویتی (Reinforcement Learning) 🎮
تو این روش، مدل مثل یه بازیکن تو یه بازی عمل می‌کنه. با آزمون و خطا یاد می‌گیره که چه کارهایی پاداش (reward) بیشتری دارن و سعی می‌کنه پاداشش رو به حداکثر برسونه.

مدل تو یه محیط (environment) تصمیم می‌گیره، نتیجه رو می‌بینه (پاداش یا جریمه) و رفتارش رو بهتر می‌کنه. مثلاً یه ربات یاد می‌گیره چطور راه بره بدون اینکه زمین بخوره.

کاربردها:
رباتیک:
مثل آموزش ربات برای جابه‌جایی اشیا.

بازی‌ها:
مثل AlphaGo که شطرنج و گو رو یاد گرفت.

سیستم‌های پیشنهاددهنده:
مثل پیشنهاد ویدیو تو یوتیوب.

مزایا:
برای مسائل پیچیده و پویا (مثل بازی‌ها) عالیه.

معایب:
آموزشش زمان‌بره و نیاز به محاسبات و ازمون خطای سنگین داره.

🚀 چرا این مدل‌ها مهم‌ان؟
(ما به الگوریتم های ترینینگ هوش مصنوعی میگیم مدل)

هر کدوم از این مدل‌ها برای یه سری مشکلات خاص طراحی شدن:

با نظارت:
وقتی داده‌های برچسب‌دار داری و می‌خوای پیش‌بینی دقیق کنی.

بدون نظارت:
وقتی داده‌های زیادی داری، ولی نمی‌دونی چه الگویی توشونه.

تقویتی:
وقتی می‌خوای یه سیستم یاد بگیره خودش تصمیم‌های بهینه بگیره.

این مدل‌ها تو همه‌چیز از تشخیص چهره تو گوشی‌تون گرفته تا پیشنهاد فیلم تو نتفلیکس و ربات‌های خودران استفاده می‌شن. دنیای AI بدون اینا عملاً نمی‌چرخه.

جمع‌بندی

مدل‌های با نظارت، بدون نظارت و تقویتی مثل سه تا ابزارن که هر کدوم یه گوشه از مشکلات دنیای داده رو حل می‌کنن. اگه تازه‌کارین، پیشنهاد می‌کنم با یه پروژه ساده (مثل دسته‌بندی با Scikit-learn) شروع کنین و کم‌کم برین سراغ مسائل پیچیده‌تر. دنیای یادگیری ماشین واقعا زیباست. :)))

#️⃣ #ai #ml #programming

 
🥷🏻 CHANNEL | GROUP
11
یکی از چالش‌های رایج بین فعالان حوزه‌ی هوش مصنوعی اینه که نمی‌دونن برای آموزش مدلشون باید از چه الگوریتمی استفاده کنن
آیا باید سراغ Classification برن؟ یا Regression؟ یا شاید Clustering؟ 🤔

خوشبختانه، کتابخونه‌ی قدرتمند Scikit-learn (sklearn) توی مستندات رسمیش یه فلوچارت خیلی کاربردی ارائه داده که با دنبال کردنش می‌تونید دقیقاً بفهمید کدوم الگوریتم مناسب نوع داده و هدف پروژه‌تونه.

لینک

#️⃣ #ai #programming

 
🥷🏻 CHANNEL | GROUP
👍63🤣1
Random Forest یا همون غول پایدار یادگیری ماشین

داستان از اونجا شروع میشه که
لئو بریمن سال ۲۰۰۱ این الگوریتم رو معرفی کرد. بعد از ۲۴ سال، هنوز تو تاپ ۵ مسابقه‌های Kaggle و پروژه‌های واقعی هست

نه به خاطر پیچیدگی، بلکه به خاطر تعادل دقت، پایداری و تفسیرپذیری.

اول از همه Random Forest چیه؟
یه مجموعه (Ensemble) از درخت‌های تصمیم که:
هر درخت روی یه زیرمجموعه تصادفی از داده‌ها (Bootstrap) آموزش می‌بینه

تو هر گره، فقط یه تعداد تصادفی از ویژگی‌ها (features) بررسی می‌شه

خروجی نهایی با رأی‌گیری (طبقه‌بندی) یا میانگین (رگرسیون) ترکیب می‌شه

نتیجه؟ یه مدل قوی که Variance درخت‌های تک رو کم می‌کنه، بدون اینکه Bias زیاد بشه.

چطور کار می‌کنه؟ (۳ گام ساده داره)

۱‏. Bagging
از داده اصلی، چندین زیرمجموعه با جایگزینی می‌سازیم.
تقریباً 63.2% داده‌ها تو هر درخت هستن (بقیه می‌شن OOB برای ارزیابی بدون نیاز به Validation).
احتمال انتخاب نشدن یه نمونه: (1 - 1/n)^n نزدیک به 0.368

۲. انتخاب تصادفی ویژگی
تو هر گره:
طبقه‌بندی: √p ویژگی (p = کل ویژگی‌ها)

رگرسیون: p/3 یا √p

این کار باعث می‌شه درخت‌ها همبستگی کمی داشته باشن

چرا اینقدر خوبه؟

دقت بالا (معمولاً تو ۱۰٪ برتر Kaggle)
-مقاوم به Overfitting (حتی با درخت عمیق)
-اهمیت ویژگی (Feature Importance) می‌ده
با داده گمشده کار می‌کنه
نیازی به نرمال‌سازی نداره

اهمیت ویژگی چطور حساب می‌شه؟
با کاهش میانگین ناخالصی (مثل Gini) در گره‌هایی که از اون ویژگی استفاده شده.
روش دقیق‌ترش: Permutation Importance
ویژگی رو به هم می‌ریزیم و افت دقت رو اندازه می‌گیریم.

کاربردهای واقعی:
تشخیص سرطان (دقت ۹۹٪)
تشخیص تقلب بانکی
سیستم پیشنهاد Netflix
پیش‌بینی قیمت خانه
و...

نقل قول بریمن (۲۰۰۱):
"Random forests does not overfit. As you add more trees, the test error keeps decreasing."

*منبع: Breiman, L. (2001). Random Forests*

#️⃣ #ai #programming

 
🥷🏻 CHANNEL | GROUP
6