خب خب خب، Redis ولی برای چه کاری؟🗃
خب خیلی وقتا اسم ردیس رو شنیدید ولی دقیقا ندونید که کاربردش چیه و کجا استفاده میشه.
اصلا Redis چی هست؟🤔
خیلی ساده بخوام بگم، ردیس یه دیتابیس in-memory هست که با ساختار کلید و مقدار(key-value) کار میکنه. یعنی داده ها به صورت یک کلید و یک مقدار توش ذخیره میشن. حالا همون in-memory بودنش باعث شده تا سرعت فوقالعاده بالای داشته باشه.
ویژگی های Redis🔍
1️⃣ in-memory بودن که باعث سرعت بالاش شده.
2️⃣ پشتیبانی از TTL یا همون انقضای خودکار داده ها.
3️⃣ Atomic بودن عملیات ها.
4️⃣ پشتیبانی از Pub/Sub برای ارسال پیام بین سرویس ها.
5️⃣ قابلیت Cluster و Scale افقی
خب کجا کاربرد داره؟🛠
کش(Cache): وقتی یه داده ی پرتکرار داریم که نمیخوایم هربار از منبع دریافتش کنیم(مثلا دیتابیس اصلی پروژه) میتونیم یه بار دریافتش کنیم، توی redis ذخیرش کنیم و درنهایت توی درخواست های بعدی اون داده رو از redis دریافت کنیم. فقط باید حواسمون باشه که داده هایی که توی redis هستن بسته به داده ای که داریم توی یه بازه زمانی مشخص آپدیت بشن تا داده های قدیمی برنگردونیم.
صف پیام(Message Queue): خب redis میتونه به عنوان یه صف سبک کار کنه. مثلا برای صف بندی ایمیل هایی که میخوایم ارسال کنیم، تسک های پس زمینه و خیلی چیزای دیگه.
مدیریت نشست ها(Session Management): برای ذخیره سازی session های کاربرا با زمان انقضا. خیلی از سیستم های احراز هویت و مدیریت سبد خرید توی سایت های فروشگاهی از redis استفاده میکنن.
جمع بندی✍️
Redis یه ابزار سبک و سریعه که با سرعت فوقلعادش برای کارهای موقتی و سریع عالیه. این دیتابیس داده هارو به شکل key-value ذخیره میکنه. اگه تسکایی دارین که نیاز به دسترسی سریع، ذخیره ی موقت یا مدیریت ساده ی تسک ها نیاز دارن، Redis میتونه انتخاب خوبی باشه.
➖➖➖➖➖➖➖➖➖➖
خب خیلی وقتا اسم ردیس رو شنیدید ولی دقیقا ندونید که کاربردش چیه و کجا استفاده میشه.
اصلا Redis چی هست؟🤔
خیلی ساده بخوام بگم، ردیس یه دیتابیس in-memory هست که با ساختار کلید و مقدار(key-value) کار میکنه. یعنی داده ها به صورت یک کلید و یک مقدار توش ذخیره میشن. حالا همون in-memory بودنش باعث شده تا سرعت فوقالعاده بالای داشته باشه.
ویژگی های Redis🔍
1️⃣ in-memory بودن که باعث سرعت بالاش شده.
2️⃣ پشتیبانی از TTL یا همون انقضای خودکار داده ها.
3️⃣ Atomic بودن عملیات ها.
4️⃣ پشتیبانی از Pub/Sub برای ارسال پیام بین سرویس ها.
5️⃣ قابلیت Cluster و Scale افقی
خب کجا کاربرد داره؟🛠
کش(Cache): وقتی یه داده ی پرتکرار داریم که نمیخوایم هربار از منبع دریافتش کنیم(مثلا دیتابیس اصلی پروژه) میتونیم یه بار دریافتش کنیم، توی redis ذخیرش کنیم و درنهایت توی درخواست های بعدی اون داده رو از redis دریافت کنیم. فقط باید حواسمون باشه که داده هایی که توی redis هستن بسته به داده ای که داریم توی یه بازه زمانی مشخص آپدیت بشن تا داده های قدیمی برنگردونیم.
صف پیام(Message Queue): خب redis میتونه به عنوان یه صف سبک کار کنه. مثلا برای صف بندی ایمیل هایی که میخوایم ارسال کنیم، تسک های پس زمینه و خیلی چیزای دیگه.
مدیریت نشست ها(Session Management): برای ذخیره سازی session های کاربرا با زمان انقضا. خیلی از سیستم های احراز هویت و مدیریت سبد خرید توی سایت های فروشگاهی از redis استفاده میکنن.
جمع بندی✍️
Redis یه ابزار سبک و سریعه که با سرعت فوقلعادش برای کارهای موقتی و سریع عالیه. این دیتابیس داده هارو به شکل key-value ذخیره میکنه. اگه تسکایی دارین که نیاز به دسترسی سریع، ذخیره ی موقت یا مدیریت ساده ی تسک ها نیاز دارن، Redis میتونه انتخاب خوبی باشه.
#️⃣ #programming #db
➖➖➖➖➖➖➖➖➖➖
🥷🏻 CHANNEL | GROUP
👍10❤2
خب خب خب، انواع کلید توی دیتابیس های رابطه ای🔑
کلید ها توی دیتابیس ها نقش حیاتی ای توی تضمین یکپارچگی و سازماندهی داده ها دارن. شاید تا الان موقع طراحی دیتابیس به این فکر کرده باشین که مثلا Primary Key چیه؟ چطوری تعیین میشه؟ یا اینکه اصلا Foreign Key چیه؟ توی این پست مهم ترین کلیدهای دیتابیس رو باهم مرور میکنیم.
1. کلید اولیه یا اصلی (Primary Key):
هر جدول یک کلید اولیه داره که رکوردها رو بهصورت یکتا شناسایی میکنه. مقادیر این کلید باید منحصربهفرد و غیر NULL باشن.
مثال: توی جدول کاربران، user_id به عنوان کلید اولیه عمل میکنه. نمیتونه NULL باشه و حتما باید منحصر به فرد باشه.
2. کلید خارجی (Foreign Key):
کلید خارجی ارتباط بین دو جدول را فراهم میکنه و به کلید اولیه یک جدول دیگر اشاره داره. این کلید برای حفظ یکپارچگی مرجع استفاده میشه. درواقع ستونی که به کلید اصلی یه جدول دیگه اشاره کنه رو کلید خارجی میگن.
مثال: توی جدول سفارشات، user_id به کلید اولیه جدول کاربران اشاره میکنه. کلید اصلی از جدول کاربران توی جدول سفارشات استفاده شده و توی جدول سفارشات بهش میگیم کلید خارجی.
3. کلید ترکیبی (Composite Key):
کلیدی که از ترکیب چند ستون ساخته میشه و برای شناسایی یکتا به کار میره. معمولاً زمانی که یک ستون به تنهایی کافی نیست از کلید ترکیبی استفاده میشه.
مثال: در جدول ثبتنامها، ترکیب student_id و course_id یک کلید ترکیبی ایجاد میکنه.
4. کلید کاندید (Candidate Key):
هر ستون یا ترکیبی از ستونها که بتونه به عنوان کلید اصلی استفاده بشه، کلید کاندید نامیده میشه. هر جدول میتواند چندین کلید کاندید داشته باشه، اما فقط یکی از اونها به عنوان کلید اصلی انتخاب میشن. خیلی ساده تر بخوام بگم ستون یا ستون هایی که میتونستند به عنوان کلید اصلی انتخاب بشن.
مثال: توی جدول محصولات، ستونهای product_code و product_name میتونن به عنوان کلید کاندید عمل کنن.
5. سوپر کلید (Super Key):
سوپر کلید، هر مجموعهای از ستونهاست که میتونه هر رکورد توی جدول رو بهطور یکتا شناسایی کنه. همه کلیدهای کاندید و کلید اصلی، سوپر کلید هستند، ولی هر سوپر کلیدی کاندید نیست.
مثال: ستون user_id یا ترکیب user_id و email در جدول کاربران میتواند سوپر کلید باشد.
7. کلید جایگزین (Alternate Key):
زمانی که یک کلید کاندید به عنوان کلید اولیه انتخاب نمیشه، بهش کلید جایگزین میگن. این کلید هنوز قابلیت شناسایی یکتا را داره،ولی به عنوان کلید اصلی انتخاب نشده.
مثال: اگر توی جدول کاربران هم user_id و هم email کلید کاندید باشن و user_id به عنوان کلید اصلی انتخاب بشه، email کلید جایگزین خواهد بود.
8. کلید منحصر به فرد (Unique Key):
مثل کلید کاندیده با این تفاوت که کلید منحصر به فرد میتونه مقدار NULL داشته باشه (در بیشتر پایگاهدادهها حتی چند مقدار NULL مجازه)، ولی مقادیر غیر NULL نباید تکراری باشن. کلید منحصر به فرد در تضمین یکتایی دادهها موثر هست.
مثال: توی جدول کاربران، email میتونه یک کلید منحصر به فرد باشه، به این صورت که مقادیر ایمیل نباید تکراری باشن، اما میتونن NULL باشند.
جمع بندی✍️
این کلیدها به شما کمک میکنن تا وابستگیهای تابعی رو بهتر بشناسید و ساختار دیتابیستون رو اصولی و منظم طراحی کنید. همچنین باعث میشن دیتابیستون هم مقیاسپذیرتر باشه و هم برای تغییرات آینده آمادهتر.
➖➖➖➖➖➖➖➖➖➖
کلید ها توی دیتابیس ها نقش حیاتی ای توی تضمین یکپارچگی و سازماندهی داده ها دارن. شاید تا الان موقع طراحی دیتابیس به این فکر کرده باشین که مثلا Primary Key چیه؟ چطوری تعیین میشه؟ یا اینکه اصلا Foreign Key چیه؟ توی این پست مهم ترین کلیدهای دیتابیس رو باهم مرور میکنیم.
1. کلید اولیه یا اصلی (Primary Key):
هر جدول یک کلید اولیه داره که رکوردها رو بهصورت یکتا شناسایی میکنه. مقادیر این کلید باید منحصربهفرد و غیر NULL باشن.
مثال: توی جدول کاربران، user_id به عنوان کلید اولیه عمل میکنه. نمیتونه NULL باشه و حتما باید منحصر به فرد باشه.
2. کلید خارجی (Foreign Key):
کلید خارجی ارتباط بین دو جدول را فراهم میکنه و به کلید اولیه یک جدول دیگر اشاره داره. این کلید برای حفظ یکپارچگی مرجع استفاده میشه. درواقع ستونی که به کلید اصلی یه جدول دیگه اشاره کنه رو کلید خارجی میگن.
مثال: توی جدول سفارشات، user_id به کلید اولیه جدول کاربران اشاره میکنه. کلید اصلی از جدول کاربران توی جدول سفارشات استفاده شده و توی جدول سفارشات بهش میگیم کلید خارجی.
3. کلید ترکیبی (Composite Key):
کلیدی که از ترکیب چند ستون ساخته میشه و برای شناسایی یکتا به کار میره. معمولاً زمانی که یک ستون به تنهایی کافی نیست از کلید ترکیبی استفاده میشه.
مثال: در جدول ثبتنامها، ترکیب student_id و course_id یک کلید ترکیبی ایجاد میکنه.
4. کلید کاندید (Candidate Key):
هر ستون یا ترکیبی از ستونها که بتونه به عنوان کلید اصلی استفاده بشه، کلید کاندید نامیده میشه. هر جدول میتواند چندین کلید کاندید داشته باشه، اما فقط یکی از اونها به عنوان کلید اصلی انتخاب میشن. خیلی ساده تر بخوام بگم ستون یا ستون هایی که میتونستند به عنوان کلید اصلی انتخاب بشن.
مثال: توی جدول محصولات، ستونهای product_code و product_name میتونن به عنوان کلید کاندید عمل کنن.
5. سوپر کلید (Super Key):
سوپر کلید، هر مجموعهای از ستونهاست که میتونه هر رکورد توی جدول رو بهطور یکتا شناسایی کنه. همه کلیدهای کاندید و کلید اصلی، سوپر کلید هستند، ولی هر سوپر کلیدی کاندید نیست.
مثال: ستون user_id یا ترکیب user_id و email در جدول کاربران میتواند سوپر کلید باشد.
برای این میگیم هر سوپر کلیدی، کلید کاندید نیست که یه سوپر کلید ممکنه از ترکیب یه کلید اصلی و یه کلید کاندید ایجاد شده باشه(مثلا user_id+user_email) ولی چون فقط با یکی از اینها(user_id) میتونیم یه رکورد رو به صورت یکتا شناسایی کنیم و کلید دومی(user_email) یه جورایی اضافه هست، دیگه این ترکیب کاندید نیست بلکه این فیلد ها هرکدوم یه کلید کاندید به حساب میان.
7. کلید جایگزین (Alternate Key):
زمانی که یک کلید کاندید به عنوان کلید اولیه انتخاب نمیشه، بهش کلید جایگزین میگن. این کلید هنوز قابلیت شناسایی یکتا را داره،ولی به عنوان کلید اصلی انتخاب نشده.
مثال: اگر توی جدول کاربران هم user_id و هم email کلید کاندید باشن و user_id به عنوان کلید اصلی انتخاب بشه، email کلید جایگزین خواهد بود.
8. کلید منحصر به فرد (Unique Key):
مثل کلید کاندیده با این تفاوت که کلید منحصر به فرد میتونه مقدار NULL داشته باشه (در بیشتر پایگاهدادهها حتی چند مقدار NULL مجازه)، ولی مقادیر غیر NULL نباید تکراری باشن. کلید منحصر به فرد در تضمین یکتایی دادهها موثر هست.
مثال: توی جدول کاربران، email میتونه یک کلید منحصر به فرد باشه، به این صورت که مقادیر ایمیل نباید تکراری باشن، اما میتونن NULL باشند.
جمع بندی✍️
این کلیدها به شما کمک میکنن تا وابستگیهای تابعی رو بهتر بشناسید و ساختار دیتابیستون رو اصولی و منظم طراحی کنید. همچنین باعث میشن دیتابیستون هم مقیاسپذیرتر باشه و هم برای تغییرات آینده آمادهتر.
#️⃣ #programming #db
➖➖➖➖➖➖➖➖➖➖
🥷🏻 CHANNEL | GROUP
👍9❤3
خب خب خب، وابستگی های تابعی توی دیتابیس ها🗄
وقتی داریم یه دیتابیس رو طراحی میکنیم، ممکنه با مسئله ای رو به رو بشیم که داده هامون تکراری بشن یا اینکه ناسازگاری پیش بیاد. اینجا میتونیم با استفاده از وابستگی های تابعی این مشکل رو حل کنیم. قبل از اینکه بتونیم وابستگیهای تابعی رو تشخیص بدیم، باید کلیدهای جدولهامون رو بشناسیم، چون معمولاً وابستگیها بر اساس کلیدها تعریف میشن. اگه با کلیدها آشنا نیستین توی این پست درمورد کلیدها هم توضیح دادیم.
وابستگی تابعی چیه؟🧐
وابستگی تابعی زمانی رخ میده که مقدار یک ستون در جدول بتونه مقدار یه ستون دیگه رو مشخص کنه. یعنی اگه دو سطر در ستون A مقدار یکسانی داشته باشن، حتما مقدار ستون B هم باید یکسان باشه. وابستگی تابعی رو به شکل زیر نمایش میدیم:
A->B
این نماد به این معناست که ستون A مقدار ستون B رو تعیین میکنه. یا از یه زاویه دیگه بهش نگاه کنیم، ستون B به ستون A وابسته هست.
برای مثال توی جدول کارمندان، emp_id میتونه emp_name رو مشخص کنه. چون هر شناسه کارمند منحصر به فرده و فقط به یک نام خاص اشاره میکنه.
اهمیت وابستگی های تابعی📝
1️⃣بهبود طراحی پایگاه داده:
شناسایی وابستگی های تابعی به ما کمک میکنن تا جدول هامون رو به شکل منطقی و بهینه طراحی کنیم و از تکرار داده ها و اطلاعات جلوگیری کنیم.
2️⃣کاهش ناهماهنگی داده:
نرمال سازی جدول ها بر اساس وابستگی های تابعی، ناهماهنگی و تناقضات داده ها رو کم میکنه و باعث بالا رفتن کیفیت داده ها میشه.
3️⃣پیدا کردن کلیدهای کاندید:
وابستگی های تابعی به پیدا کردن کلیدهای کاندید کمک میکنن.
4️⃣بهینه سازی عملکرد:
طراحی بر اساس وابستگی های تابعی، عملکرد جستجو، به روزرسانی و حذف داده هارو بهینه میکنه و از تداخل جلوگیری میکنه.
5️⃣مدیریت داده های پیچیده:
کمک به درک بهتر ساختار و روابط داده ها در سیستم های پیچیده و جلوگیری از مشکلات احتمالی.
6️⃣نرمال فرم ها:
نرمال فرم ها معمولا براساس این وابستگی ها تعریف میشن و از اون ها برای بهینه سازی ساختار جدول ها استفاده میکنن.
نحوه کشف وابستگی های تابعی🔍
1️⃣تحلیل داده ها:
بررسی رکورد ها و شناسایی الگوها و روابط بین ستون ها.
2️⃣روش های الگوریتمی:
استفاده از الگوریتم هایی مثل Apriori و FD-Mining برای کشف وابستگی های تابعی.
3️⃣تجزیه و تحلیل آماری:
استفاده از روش های آماری مثل تحلیل همبستگی و رگرسیون برای شناسایی وابستگی ها.
4️⃣مقایسه مدل های مفهومی:
ایجاد مدل های مفهومی و مقایسه اونها با داده های واقعی.
جمع بندی✍️
توی این پست با مفهوم وابستگی های تابعی آشنا شدیم، اهمیت اون هارو درک کردیم و یاد گرفتیم چطوری کشفشون کنیم و ازشون توی روند طراحی دیتابیسمون استفاده کنیم. توی بخش بعد به انواع وابستگی های تابعی و مثال های دقیق تر میپردازیم.
➖➖➖➖➖➖➖➖➖➖
وقتی داریم یه دیتابیس رو طراحی میکنیم، ممکنه با مسئله ای رو به رو بشیم که داده هامون تکراری بشن یا اینکه ناسازگاری پیش بیاد. اینجا میتونیم با استفاده از وابستگی های تابعی این مشکل رو حل کنیم. قبل از اینکه بتونیم وابستگیهای تابعی رو تشخیص بدیم، باید کلیدهای جدولهامون رو بشناسیم، چون معمولاً وابستگیها بر اساس کلیدها تعریف میشن. اگه با کلیدها آشنا نیستین توی این پست درمورد کلیدها هم توضیح دادیم.
وابستگی تابعی چیه؟🧐
وابستگی تابعی زمانی رخ میده که مقدار یک ستون در جدول بتونه مقدار یه ستون دیگه رو مشخص کنه. یعنی اگه دو سطر در ستون A مقدار یکسانی داشته باشن، حتما مقدار ستون B هم باید یکسان باشه. وابستگی تابعی رو به شکل زیر نمایش میدیم:
A->B
این نماد به این معناست که ستون A مقدار ستون B رو تعیین میکنه. یا از یه زاویه دیگه بهش نگاه کنیم، ستون B به ستون A وابسته هست.
برای مثال توی جدول کارمندان، emp_id میتونه emp_name رو مشخص کنه. چون هر شناسه کارمند منحصر به فرده و فقط به یک نام خاص اشاره میکنه.
اهمیت وابستگی های تابعی📝
1️⃣بهبود طراحی پایگاه داده:
شناسایی وابستگی های تابعی به ما کمک میکنن تا جدول هامون رو به شکل منطقی و بهینه طراحی کنیم و از تکرار داده ها و اطلاعات جلوگیری کنیم.
2️⃣کاهش ناهماهنگی داده:
نرمال سازی جدول ها بر اساس وابستگی های تابعی، ناهماهنگی و تناقضات داده ها رو کم میکنه و باعث بالا رفتن کیفیت داده ها میشه.
3️⃣پیدا کردن کلیدهای کاندید:
وابستگی های تابعی به پیدا کردن کلیدهای کاندید کمک میکنن.
4️⃣بهینه سازی عملکرد:
طراحی بر اساس وابستگی های تابعی، عملکرد جستجو، به روزرسانی و حذف داده هارو بهینه میکنه و از تداخل جلوگیری میکنه.
5️⃣مدیریت داده های پیچیده:
کمک به درک بهتر ساختار و روابط داده ها در سیستم های پیچیده و جلوگیری از مشکلات احتمالی.
6️⃣نرمال فرم ها:
نرمال فرم ها معمولا براساس این وابستگی ها تعریف میشن و از اون ها برای بهینه سازی ساختار جدول ها استفاده میکنن.
نحوه کشف وابستگی های تابعی🔍
1️⃣تحلیل داده ها:
بررسی رکورد ها و شناسایی الگوها و روابط بین ستون ها.
2️⃣روش های الگوریتمی:
استفاده از الگوریتم هایی مثل Apriori و FD-Mining برای کشف وابستگی های تابعی.
3️⃣تجزیه و تحلیل آماری:
استفاده از روش های آماری مثل تحلیل همبستگی و رگرسیون برای شناسایی وابستگی ها.
4️⃣مقایسه مدل های مفهومی:
ایجاد مدل های مفهومی و مقایسه اونها با داده های واقعی.
جمع بندی✍️
توی این پست با مفهوم وابستگی های تابعی آشنا شدیم، اهمیت اون هارو درک کردیم و یاد گرفتیم چطوری کشفشون کنیم و ازشون توی روند طراحی دیتابیسمون استفاده کنیم. توی بخش بعد به انواع وابستگی های تابعی و مثال های دقیق تر میپردازیم.
#️⃣ #programming #db
➖➖➖➖➖➖➖➖➖➖
🥷🏻 CHANNEL | GROUP
❤7👍2
خب خب خب، انواع وابستگی های تابعی توی دیتابیس🗄
توی پست قبلی با وابستگی های تابعی آشنا شدیم و کاربردشون و نحوه کشفشون رو یاد گرفتیم. توی این پست به انواع این وابستگی ها میپردازیم.
1️⃣وابستگی تابعی کامل(Full)
زمانی رخ میده که مقدار یه ستون(B) به طور کامل توسط یک ستون دیگه(A) تعیین میشه. یعنی هیچ زیر مجموعه ای از A نمیتونه مقدار B رو تعیین کنه.
مثال: employee_id -> employee_name
2️⃣وابستگی تابعی جزئی(Partial)
زمانی رخ میده که فقط بخشی از یک کلید ترکیبی مقدار یک ستون دیگه رو تعیین میکنه.
مثال: اگر در (employee_id, department_id -> department_name) فقط department_id بتونه به تنهایی department_name رو تعیین کنه این وابستگی رخ میده.
3️⃣وابستگی تابعی متعدی(Transitive)
اگر A مقدار B رو تعیین کنه و B مقدار C رو تعیین کنه، وابستگی متعدی بین A و C رخ میده.
مثال: اگر order_id -> customer_id و customer_id -> customer_name برقرار باشن بنابراین order_id -> customer_name هم برقراره.
4️⃣وابستگی تابعی بدیهی(Trivial)
توی وابستگی تابعی بدیهی مجموعه وابسته زیر مجموعه ای از مجموعه تعیین کننده است و در این صورت مجموعه تعیین کننده مقادیر مجموعه وابسته رو تعیین میکنه.
مثال: (employee_id, employee_name -> employee_name)
5️⃣وابستگی تابعی غیربدیهی(Non-Trivial)
در وابستگی تابعی غیربدیهی مجموعه وابسته زیر مجموعه ای از مجموعه تعیین کننده نیست.
مثال: employee_id -> employee_name
6️⃣وابستگی تابعی چند مقداری(MultiValued)
زمانی رخ میده که یک کلید اولیه میتونه مقدار چندین ستون رو تعیین کنه به شرطی که بین ستون های وابسته هیچ ارتباط یا وابستگی ای نباشه.
مثال: employee_id -> (employee_name, employee_age). توی این مثال id کارمند اسم و سن اون رو تعیین میکنه ولی ارتباط یا وابستگی ای بین سن و اسم کارمند وجود نداره.
جمع بندی✍️
این ها انواع وابستگی های تابعی بودن و سعی کردم ساده و قابل فهم توضیحشون بدم. در اصل پیدا کردن و شناختنشون یکمی پیچیده تر از چیزیه که اینجا بیان شد، میتونین با مراجعه به منابع مختلف دانش خودتون توی این زمینه رو تقویت کنید.
➖➖➖➖➖➖➖➖➖➖
توی پست قبلی با وابستگی های تابعی آشنا شدیم و کاربردشون و نحوه کشفشون رو یاد گرفتیم. توی این پست به انواع این وابستگی ها میپردازیم.
1️⃣وابستگی تابعی کامل(Full)
زمانی رخ میده که مقدار یه ستون(B) به طور کامل توسط یک ستون دیگه(A) تعیین میشه. یعنی هیچ زیر مجموعه ای از A نمیتونه مقدار B رو تعیین کنه.
مثال: employee_id -> employee_name
2️⃣وابستگی تابعی جزئی(Partial)
زمانی رخ میده که فقط بخشی از یک کلید ترکیبی مقدار یک ستون دیگه رو تعیین میکنه.
مثال: اگر در (employee_id, department_id -> department_name) فقط department_id بتونه به تنهایی department_name رو تعیین کنه این وابستگی رخ میده.
3️⃣وابستگی تابعی متعدی(Transitive)
اگر A مقدار B رو تعیین کنه و B مقدار C رو تعیین کنه، وابستگی متعدی بین A و C رخ میده.
مثال: اگر order_id -> customer_id و customer_id -> customer_name برقرار باشن بنابراین order_id -> customer_name هم برقراره.
4️⃣وابستگی تابعی بدیهی(Trivial)
توی وابستگی تابعی بدیهی مجموعه وابسته زیر مجموعه ای از مجموعه تعیین کننده است و در این صورت مجموعه تعیین کننده مقادیر مجموعه وابسته رو تعیین میکنه.
مثال: (employee_id, employee_name -> employee_name)
5️⃣وابستگی تابعی غیربدیهی(Non-Trivial)
در وابستگی تابعی غیربدیهی مجموعه وابسته زیر مجموعه ای از مجموعه تعیین کننده نیست.
مثال: employee_id -> employee_name
6️⃣وابستگی تابعی چند مقداری(MultiValued)
زمانی رخ میده که یک کلید اولیه میتونه مقدار چندین ستون رو تعیین کنه به شرطی که بین ستون های وابسته هیچ ارتباط یا وابستگی ای نباشه.
مثال: employee_id -> (employee_name, employee_age). توی این مثال id کارمند اسم و سن اون رو تعیین میکنه ولی ارتباط یا وابستگی ای بین سن و اسم کارمند وجود نداره.
جمع بندی✍️
این ها انواع وابستگی های تابعی بودن و سعی کردم ساده و قابل فهم توضیحشون بدم. در اصل پیدا کردن و شناختنشون یکمی پیچیده تر از چیزیه که اینجا بیان شد، میتونین با مراجعه به منابع مختلف دانش خودتون توی این زمینه رو تقویت کنید.
#️⃣ #programming #db
➖➖➖➖➖➖➖➖➖➖
🥷🏻 CHANNEL | GROUP
❤9
خب خب خب، git reset🔄
توی گیت، دستور reset مثل یه دکمه ی سفر در زمانه که مارو به گذشته ی پروژه میبره. اما چند حالت مختلف داره و بسته به اینکه کدوم یکی از این حالت ها استفاده بشن میتونه روی تاریخچه ی پروژه هم تاثیر بزاره.
Mixed🟡
این حالت پیش فرض برای دستور reset هست. HEAD رو به کامیت مشخص شده برمیگردونه. تغییرات بعد از اون کامیت از Stage خارج میشن(unstaged) ولی تغییرات هنوز توی فایل ها هستن. برای موقعی که میخواین تغییرات باقی بمونن ولی توی Stage نباشن خوبه.
شکل کلی دستور ریست:
دستور ریست با حالت mixed:
دستور بالا آخرین کامیت رو پاک میکنه، تغییرات هنوز وجود دارن ولی دیگه توی Stage نیستن.
Soft🔵
فقط HEAD رو برمیگردونه به کامیت مشخص شده. تغییرات بعد از اون کامیت رو توی Stage نگه میداره. زمانی استفاده میشه که بخوایم کامیت رو حذف کنیم ولی تغییرات باقی بمونن، برای commit مجدد یا اصلاح پیام.
به طور مثال دستور بالا آخرین کامیت رو پاک میکنه و تغییرات رو توی Staging قرار میده.
Hard🔴
توی این حالت HEAD به کامیت مشخص شده برمیگرده، Staging area و فایل هارو کاملا با کامیت مشخص شده هماهنگ میکنه، درواقع هرتغییر یا کامیتی بعد از کامیت مشخص شده پاک میشه و پروژه برمیگرده به وضعیت همون کامیت. وقتی استفاده میشه که بخوایم همه چی رو مثل اون کامیت کنیم و تغییرات بعد از اون رو حذف کنیم.
این دستور پروژه رو طوری تغییر میده که انگار اصلا کامیت آخر وجود نداشته. هیچ تغییری هیچ جایی ذخیره نمیشه و فایل ها برمیگردن به کامیت قبلی.
جمع بندی✍️
دستور reset میتونه نجات دهنده و حتی مخرب باشه. میتونه پروژه رو نجات بده یا یه تغییر بزرگ رو از بین ببره. کاربردای مختلفی داره و برای برگشت به کامیت های قبلی به شکل های مختلف استفاده میشه.
➖➖➖➖➖➖➖➖➖➖
توی گیت، دستور reset مثل یه دکمه ی سفر در زمانه که مارو به گذشته ی پروژه میبره. اما چند حالت مختلف داره و بسته به اینکه کدوم یکی از این حالت ها استفاده بشن میتونه روی تاریخچه ی پروژه هم تاثیر بزاره.
Mixed🟡
این حالت پیش فرض برای دستور reset هست. HEAD رو به کامیت مشخص شده برمیگردونه. تغییرات بعد از اون کامیت از Stage خارج میشن(unstaged) ولی تغییرات هنوز توی فایل ها هستن. برای موقعی که میخواین تغییرات باقی بمونن ولی توی Stage نباشن خوبه.
شکل کلی دستور ریست:
git reset <--mode> <commit-id>
دستور ریست با حالت mixed:
git reset --mixed HEAD~1
git reset HEAD~1 # هست mixed حالت پیش فرض همین
دستور بالا آخرین کامیت رو پاک میکنه، تغییرات هنوز وجود دارن ولی دیگه توی Stage نیستن.
Soft🔵
فقط HEAD رو برمیگردونه به کامیت مشخص شده. تغییرات بعد از اون کامیت رو توی Stage نگه میداره. زمانی استفاده میشه که بخوایم کامیت رو حذف کنیم ولی تغییرات باقی بمونن، برای commit مجدد یا اصلاح پیام.
git reset --soft HEAD~1
به طور مثال دستور بالا آخرین کامیت رو پاک میکنه و تغییرات رو توی Staging قرار میده.
Hard🔴
توی این حالت HEAD به کامیت مشخص شده برمیگرده، Staging area و فایل هارو کاملا با کامیت مشخص شده هماهنگ میکنه، درواقع هرتغییر یا کامیتی بعد از کامیت مشخص شده پاک میشه و پروژه برمیگرده به وضعیت همون کامیت. وقتی استفاده میشه که بخوایم همه چی رو مثل اون کامیت کنیم و تغییرات بعد از اون رو حذف کنیم.
git reset --hard HEAD~1
این دستور پروژه رو طوری تغییر میده که انگار اصلا کامیت آخر وجود نداشته. هیچ تغییری هیچ جایی ذخیره نمیشه و فایل ها برمیگردن به کامیت قبلی.
جمع بندی✍️
دستور reset میتونه نجات دهنده و حتی مخرب باشه. میتونه پروژه رو نجات بده یا یه تغییر بزرگ رو از بین ببره. کاربردای مختلفی داره و برای برگشت به کامیت های قبلی به شکل های مختلف استفاده میشه.
#️⃣ #programming
➖➖➖➖➖➖➖➖➖➖
🥷🏻 CHANNEL | GROUP
🔥11👍2❤1
خب خب خب، زمان به زبان کامپیوتر ها⏱️
حتما تا الان توی برنامه نویسی یا دیتابیس ها، زمان رو به شکل یه عدد عجیب و غریب مثل
چرا از 1970؟🤔
زمانی که سیستم عامل Unix در دهه ی 70 ساخته شد، توسعه دهنده ها برای ذخیره ی زمان تصمیم گرفتن یه نقطه شروع ثابت رو انتخاب کنن و اون نقطه شروع شد:
1970-01-01 00:00:00
جه کاربردی داره و کجا استفاده میشه؟🛠
1️⃣هماهنگی زمان توی سیستم های مختلف
زمان میتونه توی سیستم های مختلف و حتی سطوح مختلف، به شکل های مختلفی ثبت بشه یا برای همه ی سیستم ها قابل خوندن نباشه، با استفاده از Epoch Time خیلی راحت میشه هماهنگی و دقت زمان بین سیستم های مختلف رو حفظ کرد.
2️⃣مقایسه ی ساده تر زمان
چون فقط یه عدد معمولیه، خیلی راحت میشه با عملگرهای ساده مثل بزرگتر یا کوچکتر، زمانها رو با هم مقایسه کرد.
به عنوان ساده ترین مثال هم میشه به توکن های JWT اشاره کرد که برای نگهداری زمان انقضا از Epoch Time استفاده میکنن.
چطوری Epoch Time رو به دست بیاریم؟🧮
میتونید به سایت هایی مثل epoch converter مراجعه کنید. این سایت ها امکاناتی مثل تبدیل زمان و نمایش زمان فعلی به شکل Epoch رو دراختیارتون قرار میدن.
همچنین میتونید با زبان برنامه نویسی خودتون هم زمان هارو تبدیل کنید. به طور مثال توی پایتون با کد زیر میشه اینکارو انجام داد:
نکته جالب: زمان منفی هم داریم!
درسته اگه بخوایم زمان قبل از 1970 رو نشون بدیم Epoch Time مقدار منفی میگیره. مثلا:
جمع بندی✍️
درواقع Epoch Time یعنی تعداد ثانیه هایی که از ۱ ژانویه ۱۹۷۰ میلادی ساعت 00:00:00 گذشته. این روش زمان سنجی توی بیشتر سیستم عامل ها، زبان های برنامه نویسی و دیتابیس ها استفاده میشه و برای اکثر برنامه ها قابل خوندنه. مزیتیش اینه که زمان رو به صورت عددی، دقیق، فشرده و قابل مقایسه ذخیره میکنه و زمان توی Epoch Time میتونه مثبت یا منفی باشه.
➖➖➖➖➖➖➖➖➖➖
حتما تا الان توی برنامه نویسی یا دیتابیس ها، زمان رو به شکل یه عدد عجیب و غریب مثل
1717069200
دیدین. این عدد درواقع همون Epoch Time یا Unix Timestamp هست. درواقع از 1 ژانویه ی 1970 شمارش زمان به این شکل شروع شده و اون لحظه عدد صفر رو در زمان یونیکس مشخص میکنه. نحوه شمارش هم به این شکله که هر ثانیه که از اون لحظه بگذره، به این عدد یکی اضافه میشه.چرا از 1970؟🤔
زمانی که سیستم عامل Unix در دهه ی 70 ساخته شد، توسعه دهنده ها برای ذخیره ی زمان تصمیم گرفتن یه نقطه شروع ثابت رو انتخاب کنن و اون نقطه شروع شد:
1970-01-01 00:00:00
جه کاربردی داره و کجا استفاده میشه؟🛠
1️⃣هماهنگی زمان توی سیستم های مختلف
زمان میتونه توی سیستم های مختلف و حتی سطوح مختلف، به شکل های مختلفی ثبت بشه یا برای همه ی سیستم ها قابل خوندن نباشه، با استفاده از Epoch Time خیلی راحت میشه هماهنگی و دقت زمان بین سیستم های مختلف رو حفظ کرد.
2️⃣مقایسه ی ساده تر زمان
چون فقط یه عدد معمولیه، خیلی راحت میشه با عملگرهای ساده مثل بزرگتر یا کوچکتر، زمانها رو با هم مقایسه کرد.
به عنوان ساده ترین مثال هم میشه به توکن های JWT اشاره کرد که برای نگهداری زمان انقضا از Epoch Time استفاده میکنن.
چطوری Epoch Time رو به دست بیاریم؟🧮
میتونید به سایت هایی مثل epoch converter مراجعه کنید. این سایت ها امکاناتی مثل تبدیل زمان و نمایش زمان فعلی به شکل Epoch رو دراختیارتون قرار میدن.
همچنین میتونید با زبان برنامه نویسی خودتون هم زمان هارو تبدیل کنید. به طور مثال توی پایتون با کد زیر میشه اینکارو انجام داد:
from datetime import datetime
now = datetime.now()
print(int(datetime.timestamp(now))) >>> 1717069200
نکته جالب: زمان منفی هم داریم!
درسته اگه بخوایم زمان قبل از 1970 رو نشون بدیم Epoch Time مقدار منفی میگیره. مثلا:
-86400 → معادل: 31 دسامبر 1969
جمع بندی✍️
درواقع Epoch Time یعنی تعداد ثانیه هایی که از ۱ ژانویه ۱۹۷۰ میلادی ساعت 00:00:00 گذشته. این روش زمان سنجی توی بیشتر سیستم عامل ها، زبان های برنامه نویسی و دیتابیس ها استفاده میشه و برای اکثر برنامه ها قابل خوندنه. مزیتیش اینه که زمان رو به صورت عددی، دقیق، فشرده و قابل مقایسه ذخیره میکنه و زمان توی Epoch Time میتونه مثبت یا منفی باشه.
#️⃣ #programming
➖➖➖➖➖➖➖➖➖➖
🥷🏻 CHANNEL | GROUP
❤5
خب خب خب، مدیریت تنظیمات با Pydantic⚙️
احتمالا اسم Pydantic به گوشتون خورده یا توی پروژه هاتون ازش استفاده کردین. ولی برای مدیریت تنظیمات پروژه از چی استفاده کردین؟ Pydantic یه کلاس به اسم BaseSettings ارائه میده که برای مدیریت تنظیمات برنامه از جمله متغیر های محیطی و پیش فرض ها استفاده میشه.
چرا از BaseSettings استفاده کنیم؟🧐
1️⃣ خواندن خودکار متغیر های محیطی:
با استفاده از BaseSettigns بدون نیاز به کتابخونه های اضافی مثل python-dotenv میتونیم به متغیر های محیطی دسترسی داشته باشیم.
2️⃣ اعتبارسنجی امن و خودکار متغیر ها:
Pydantic به صورت خودکار تایپ هارو چک میکنه و دیگه نیازی به type cast دستی نیست.
3️⃣ پشتیبانی ساده از چند محیط:
با یکم خلاقیت میتونیم چندین کلاس تنظیمات برای محیطهای مختلف مثل Dev, Prod و Test بسازیم.
4️⃣ مناسب برای پروژههای بزرگ:
میشه همهی تنظیمات پروژه مثل دیتابیس، کلیدهای API، حالت دیباگ و... رو توی یک کلاس متمرکز نگهداری کرد و راحت تو کل پروژه استفادهشون کرد.
ساختار پایه ی کلاس تنظیمات🔧
قبل از هر کاری مطمئن بشید که
و بعد میتونید با تعریف کلاس و تنظیماتی که نیاز دارین اونارو مدیریت کنین.
این یعنی:
مقدار debug به طور پیش فرض True هست و بقیه مقادیر باید توی فایل env. یا محیط سیستم تعریف بشن، در غیر این صورت ارور میگیریم. نکته جالب اینه که Pydantic از type cast خودکار پشتیبانی میکنه، مثلا اینجا مقدار "True" توی محیط رو به bool تبدیل میکنه.
و فایل env. باید به این شکل باشه:
نحوه ی استفاده از تنظیمات🛠
میتونیم یه نمونه از کلاس تنظیمات بسازیم و بعد با استفاده از اتریبیوت ها به تنظیمات دسترسی پیدا کنیم:
جمع بندی✍️
کلاس
توی پروژههای بزرگ یا اپلیکیشنهایی که چند محیط (مثل dev، test و prod) دارن، استفاده از این ساختار کمک میکنه کد تمیزتر و حرفهایتری داشته باشین.
➖➖➖➖➖➖➖➖➖➖
احتمالا اسم Pydantic به گوشتون خورده یا توی پروژه هاتون ازش استفاده کردین. ولی برای مدیریت تنظیمات پروژه از چی استفاده کردین؟ Pydantic یه کلاس به اسم BaseSettings ارائه میده که برای مدیریت تنظیمات برنامه از جمله متغیر های محیطی و پیش فرض ها استفاده میشه.
چرا از BaseSettings استفاده کنیم؟🧐
1️⃣ خواندن خودکار متغیر های محیطی:
با استفاده از BaseSettigns بدون نیاز به کتابخونه های اضافی مثل python-dotenv میتونیم به متغیر های محیطی دسترسی داشته باشیم.
2️⃣ اعتبارسنجی امن و خودکار متغیر ها:
Pydantic به صورت خودکار تایپ هارو چک میکنه و دیگه نیازی به type cast دستی نیست.
3️⃣ پشتیبانی ساده از چند محیط:
با یکم خلاقیت میتونیم چندین کلاس تنظیمات برای محیطهای مختلف مثل Dev, Prod و Test بسازیم.
4️⃣ مناسب برای پروژههای بزرگ:
میشه همهی تنظیمات پروژه مثل دیتابیس، کلیدهای API، حالت دیباگ و... رو توی یک کلاس متمرکز نگهداری کرد و راحت تو کل پروژه استفادهشون کرد.
ساختار پایه ی کلاس تنظیمات🔧
قبل از هر کاری مطمئن بشید که
pydantic
و پکیج pydantic-settings
نصب باشن:pip install pydantic pydantic-settings
و بعد میتونید با تعریف کلاس و تنظیماتی که نیاز دارین اونارو مدیریت کنین.
from pydantic import Field
from pydantic_settings import BaseSettings, SettingsConfigDict
class Settings(BaseSettings):
model_config = SettingsConfigDict(
env_file='.env', # env file location
)
debug: bool = True
database_url: str
secret_key: str
این یعنی:
مقدار debug به طور پیش فرض True هست و بقیه مقادیر باید توی فایل env. یا محیط سیستم تعریف بشن، در غیر این صورت ارور میگیریم. نکته جالب اینه که Pydantic از type cast خودکار پشتیبانی میکنه، مثلا اینجا مقدار "True" توی محیط رو به bool تبدیل میکنه.
و فایل env. باید به این شکل باشه:
DATABASE_URL=postgresql://user:pass@localhost/dbname
SECRET_KEY=s3cr3t-k3y
نحوه ی استفاده از تنظیمات🛠
میتونیم یه نمونه از کلاس تنظیمات بسازیم و بعد با استفاده از اتریبیوت ها به تنظیمات دسترسی پیدا کنیم:
settings = Settings()
print(settings.database_url)
print(settings.debug)
جمع بندی✍️
کلاس
BaseSettings
یکی از ابزارهای بسیار مهم و کاربردی در Pydantic هست که به شما اجازه میده تنظیمات پروژه رو به شکل متمرکز، امن، قابل تست و قابل توسعه مدیریت کنین.توی پروژههای بزرگ یا اپلیکیشنهایی که چند محیط (مثل dev، test و prod) دارن، استفاده از این ساختار کمک میکنه کد تمیزتر و حرفهایتری داشته باشین.
#️⃣ #programming #python
➖➖➖➖➖➖➖➖➖➖
🥷🏻 CHANNEL | GROUP
👍6❤4🔥4
خب خب خب، بهترین فریمورک ها برای توسعه مایکروسرویس🕸
تو دنیای امروز که اپلیکیشنها پیچیدهتر شدن و نیاز به مقیاسپذیری، توسعه سریع و قابلیت نگهداری بالا بیشتر از قبل حس میشه، معماری مایکروسرویس (Microservices) به یکی از محبوبترین انتخابها برای توسعه نرمافزارهای مدرن تبدیل شده.
اما انتخاب فریمورک مناسب برای پیادهسازی مایکروسرویسها خیلی مهمه؛ چون مستقیماً روی سرعت توسعه، پرفورمنس، ساختار پروژه و حتی تجربهی تیم تأثیر میذاره.
Spring Boot (Java)☕️
یکی از محبوبترین انتخابها برای توسعه سرویسهای بزرگ و سازمانی. این فریمورک با ترکیب قدرت Java و اکوسیستم Spring، ساخت سرویسهای مستقل، مقیاسپذیر و امن رو آسون میکنه.
از نقاط قوتش میشه به پشتیبانی گسترده از ابزارهای Enterprise، جامعهی کاربری بسیار بزرگ، مستندات کامل و یکپارچگی فوقالعاده با Spring Cloud اشاره کرد.
FastAPI (Python)⚡️
فریمورکی مدرن و سبک برای ساخت APIهای سریع و خوانا با زبان پایتون. طراحیشده بر پایه ASGI و Starlette و بهشدت روی سرعت و خوانایی تمرکز داره. از مزایای مهمش میتونیم به سرعت بالا، پشتیبانی عالی از Async Programming، مستندسازی خودکار با Swagger و ReDoc، استفاده از type hinting و هماهنگی کامل با استانداردهای OpenAPI اشاره کنیم.
ASP.NET Core (C#)🧱
انتخاب حرفهای برای توسعهدهندگان داتنت، مخصوصاً در پروژههایی که از زیرساختهای Microsoft استفاده میکنن. این فریمورک کاملاً cross-platform هست و روی لینوکس هم عملکرد بالایی داره. پرفورمنس عالی، امنیت بالا، پشتیبانی از WebSocket، gRPC و امکانات کامل برای تولید و دیپلوی مایکروسرویسها از مزایای مهمشه.
Go-Kit (Go)🦾
فریمورکی ساختارمند برای توسعه سرویسهای حرفهای با زبان Go. برخلاف فریمورکهای سبکتر مثل Gin، این ابزار مناسب تیمهایی هست که دنبال معماری تمیز، قابلیت تست بالا، جداسازی concerns و مقیاسپذیری بالا هستن. پشتیبانی از transportهای مختلف (HTTP، gRPC و...)، logging، tracing و monitoring باعث شده انتخاب خوبی برای سیستمهایی با ترافیک بالا باشه.
جمع بندی✍️
انتخاب فریمورک مناسب برای مایکروسرویس به زبان برنامهنویسی، تجربهی تیم، نوع پروژه و زیرساخت فنی بستگی داره. اگر به یک اکوسیستم پایدار و کامل نیاز دارید، Spring Boot یا ASP.NET Core میتونن بهترین انتخاب باشن. اما اگر هدف شما سرعت، سادگی و توسعه سریعتره، FastAPI یا Go-Kit میتونن عملکرد بسیار خوبی داشته باشن.
➖➖➖➖➖➖➖➖➖➖
تو دنیای امروز که اپلیکیشنها پیچیدهتر شدن و نیاز به مقیاسپذیری، توسعه سریع و قابلیت نگهداری بالا بیشتر از قبل حس میشه، معماری مایکروسرویس (Microservices) به یکی از محبوبترین انتخابها برای توسعه نرمافزارهای مدرن تبدیل شده.
اما انتخاب فریمورک مناسب برای پیادهسازی مایکروسرویسها خیلی مهمه؛ چون مستقیماً روی سرعت توسعه، پرفورمنس، ساختار پروژه و حتی تجربهی تیم تأثیر میذاره.
Spring Boot (Java)☕️
یکی از محبوبترین انتخابها برای توسعه سرویسهای بزرگ و سازمانی. این فریمورک با ترکیب قدرت Java و اکوسیستم Spring، ساخت سرویسهای مستقل، مقیاسپذیر و امن رو آسون میکنه.
از نقاط قوتش میشه به پشتیبانی گسترده از ابزارهای Enterprise، جامعهی کاربری بسیار بزرگ، مستندات کامل و یکپارچگی فوقالعاده با Spring Cloud اشاره کرد.
FastAPI (Python)⚡️
فریمورکی مدرن و سبک برای ساخت APIهای سریع و خوانا با زبان پایتون. طراحیشده بر پایه ASGI و Starlette و بهشدت روی سرعت و خوانایی تمرکز داره. از مزایای مهمش میتونیم به سرعت بالا، پشتیبانی عالی از Async Programming، مستندسازی خودکار با Swagger و ReDoc، استفاده از type hinting و هماهنگی کامل با استانداردهای OpenAPI اشاره کنیم.
ASP.NET Core (C#)🧱
انتخاب حرفهای برای توسعهدهندگان داتنت، مخصوصاً در پروژههایی که از زیرساختهای Microsoft استفاده میکنن. این فریمورک کاملاً cross-platform هست و روی لینوکس هم عملکرد بالایی داره. پرفورمنس عالی، امنیت بالا، پشتیبانی از WebSocket، gRPC و امکانات کامل برای تولید و دیپلوی مایکروسرویسها از مزایای مهمشه.
Go-Kit (Go)🦾
فریمورکی ساختارمند برای توسعه سرویسهای حرفهای با زبان Go. برخلاف فریمورکهای سبکتر مثل Gin، این ابزار مناسب تیمهایی هست که دنبال معماری تمیز، قابلیت تست بالا، جداسازی concerns و مقیاسپذیری بالا هستن. پشتیبانی از transportهای مختلف (HTTP، gRPC و...)، logging، tracing و monitoring باعث شده انتخاب خوبی برای سیستمهایی با ترافیک بالا باشه.
جمع بندی✍️
انتخاب فریمورک مناسب برای مایکروسرویس به زبان برنامهنویسی، تجربهی تیم، نوع پروژه و زیرساخت فنی بستگی داره. اگر به یک اکوسیستم پایدار و کامل نیاز دارید، Spring Boot یا ASP.NET Core میتونن بهترین انتخاب باشن. اما اگر هدف شما سرعت، سادگی و توسعه سریعتره، FastAPI یا Go-Kit میتونن عملکرد بسیار خوبی داشته باشن.
#️⃣ #programming #backend
➖➖➖➖➖➖➖➖➖➖
🥷🏻 CHANNEL | GROUP
❤13
خب خب خب، بهترین زبان های برنامه نویسی برای Cloud Programming☁️💻
خب برنامه نویسی ابری یعنی توسعه ی نرم افزارهایی که روی سرویس های ابری مثل AWS, Google Cloud, Azureو... اجرا میشن. توی این فضا مقیاس پذیری، سرعت اجرا، امنیت و پشتیبانی از ابزارهای ابری حرف اول رو میزنن.
Python🐍
به خاطر سادگی و سرعت توسعه، یکی از محبوبترین زبانها برای Cloud محسوب میشه. توی پروژههای مربوط به اتوماسیون، DevOps و مخصوصاً یادگیری ماشین رو سرویسهای ابری مثل AWS یا Google Cloud خیلی خوب جواب میده. اما به خاطر سرعت پایین و محدودیت در پردازشهای سنگین (مثل real-time) برای پروژههای بزرگ انتخاب اول نیست.
Go🚀
زبانیه که دقیقاً برای همین کار ساخته شده. سریع، کممصرف و با پشتیبانی قوی از concurrency، Go گزینهای ایدهآل برای میکروسرویسها، زیرساختهای cloud-native و سرویسهایی با بار بالا محسوب میشه. البته نسبت به پایتون ساده نیست و فضای توسعهش خشکتره.
JavaScript (Node.js)🪩
وقتی با جاوااسکریپت آشنایی داشته باشین، استفاده از Node.js تو Cloud مخصوصاً برای ساخت API و سرورهای سبک یا سرویسهای Serverless خیلی راحته. سرعت توسعه بالاست و پشتیبانی از async بودن ذاتی خیلی به درد میخوره. ولی برای پردازشهای سنگین یا مدیریت منابع در حد enterprise، محدودیت داره.
Java☕️
با وجود قدیمی بودن، هنوزم تو شرکتهای بزرگ برای ساخت سرویسهای پایدار و مقیاسپذیر استفاده میشه. ابزارهایی مثل Spring Boot و Spring Cloud تو فضای ابری خیلی پرکاربردن. قدرت و امنیتش عالیه، ولی کدنویسیش verbose و سنگینتر از زبانهای مدرنتره.
Rust🦀
زبانیه که سرعت و امنیت رو همزمان داره. برای سیستمهایی که performance یا امنیت حافظه خیلی مهمه، انتخاب خوبیه. تو پروژههای زیرساختی یا اپهایی که مصرف منابع براشون مهمه، Rust حرف نداره. البته یادگیریش سخته و جامعهی توسعهدهندههاش هنوز به بزرگی بقیه نیست.
جمع بندی✍️
در نهایت، انتخاب زبان برای Cloud Programming بستگی به نوع پروژه داره؛ اگه دنبال توسعه سریع و ساده هستین، Python و Node.js انتخابای خوبیان. برای سیستمهای سریع و مقیاسپذیر Go میدرخشه، Java برای اپهای پایدار سازمانی مناسبه، و Rust برای پروژههایی با نیاز بالا به performance و امنیت انتخاب آیندهمحوره. مهم اینه بدونین چی میخواین و ابزار مناسب همون رو انتخاب کنین.
➖➖➖➖➖➖➖➖➖➖
خب برنامه نویسی ابری یعنی توسعه ی نرم افزارهایی که روی سرویس های ابری مثل AWS, Google Cloud, Azureو... اجرا میشن. توی این فضا مقیاس پذیری، سرعت اجرا، امنیت و پشتیبانی از ابزارهای ابری حرف اول رو میزنن.
Python🐍
به خاطر سادگی و سرعت توسعه، یکی از محبوبترین زبانها برای Cloud محسوب میشه. توی پروژههای مربوط به اتوماسیون، DevOps و مخصوصاً یادگیری ماشین رو سرویسهای ابری مثل AWS یا Google Cloud خیلی خوب جواب میده. اما به خاطر سرعت پایین و محدودیت در پردازشهای سنگین (مثل real-time) برای پروژههای بزرگ انتخاب اول نیست.
Go🚀
زبانیه که دقیقاً برای همین کار ساخته شده. سریع، کممصرف و با پشتیبانی قوی از concurrency، Go گزینهای ایدهآل برای میکروسرویسها، زیرساختهای cloud-native و سرویسهایی با بار بالا محسوب میشه. البته نسبت به پایتون ساده نیست و فضای توسعهش خشکتره.
JavaScript (Node.js)🪩
وقتی با جاوااسکریپت آشنایی داشته باشین، استفاده از Node.js تو Cloud مخصوصاً برای ساخت API و سرورهای سبک یا سرویسهای Serverless خیلی راحته. سرعت توسعه بالاست و پشتیبانی از async بودن ذاتی خیلی به درد میخوره. ولی برای پردازشهای سنگین یا مدیریت منابع در حد enterprise، محدودیت داره.
Java☕️
با وجود قدیمی بودن، هنوزم تو شرکتهای بزرگ برای ساخت سرویسهای پایدار و مقیاسپذیر استفاده میشه. ابزارهایی مثل Spring Boot و Spring Cloud تو فضای ابری خیلی پرکاربردن. قدرت و امنیتش عالیه، ولی کدنویسیش verbose و سنگینتر از زبانهای مدرنتره.
Rust🦀
زبانیه که سرعت و امنیت رو همزمان داره. برای سیستمهایی که performance یا امنیت حافظه خیلی مهمه، انتخاب خوبیه. تو پروژههای زیرساختی یا اپهایی که مصرف منابع براشون مهمه، Rust حرف نداره. البته یادگیریش سخته و جامعهی توسعهدهندههاش هنوز به بزرگی بقیه نیست.
جمع بندی✍️
در نهایت، انتخاب زبان برای Cloud Programming بستگی به نوع پروژه داره؛ اگه دنبال توسعه سریع و ساده هستین، Python و Node.js انتخابای خوبیان. برای سیستمهای سریع و مقیاسپذیر Go میدرخشه، Java برای اپهای پایدار سازمانی مناسبه، و Rust برای پروژههایی با نیاز بالا به performance و امنیت انتخاب آیندهمحوره. مهم اینه بدونین چی میخواین و ابزار مناسب همون رو انتخاب کنین.
#️⃣ #programming #backend
➖➖➖➖➖➖➖➖➖➖
🥷🏻 CHANNEL | GROUP
❤9
این چند وقته نبودم و واقعا نیاز به استراحت ذهنی داشتم.
به زودی دوباره فعالیت رو شروع میکنم و صد البته چیزهای مفید تریم میزارم
ممنونم از کسایی این مدت به من کمک کردن مخصوصا @real_denver ❤️😊
به امید روزای بهتر و زندگی اروم تر 😊
➖➖➖➖➖➖➖➖➖➖
به زودی دوباره فعالیت رو شروع میکنم و صد البته چیزهای مفید تریم میزارم
ممنونم از کسایی این مدت به من کمک کردن مخصوصا @real_denver ❤️😊
به امید روزای بهتر و زندگی اروم تر 😊
➖➖➖➖➖➖➖➖➖➖
🥷🏻 CHANNEL | GROUP
❤10👌1
اگه پیشنهادی دارید یا دوست دارید یه چیز خاص تر توی کانال ببینید، حتماً تو کامنت همین پست بگید. خوشحال میشم پستها رو جوری بسازم که بیشتر به دلتون بشینه 😊
❤10👎3🤣1💔1
یکی از چالشهایی که خیلی از برنامهنویسها باهاش روبهرو میشن، اینه که بعد از یه مدت طولانی دوری از کدنویسی، حس میکنن مهارتهاشون زنگ زده انگار یه جورایی انگشتاشون دیگه با کیبورد غریبه شده و مفاهیم برنامهنویسی تو ذهنشون غبار گرفته. اما نگران نباشین این پست برای شماست که میخواین دوباره به اوج برگردین و مهارتهای کدنویسیتون رو مثل قبل کنید. بیاین با هم یه نقشه راه بکشیم که چطور میتونیم مهارتهامون رو بازیابی کنیم و دوباره تو دنیای کد به اوج برگردیم🚀
🧠 چرا مهارتها زنگ میزنن؟
اول بذارین خیالتون رو راحت کنم: دوری از کدنویسی کاملاً طبیعیه. شاید سر یه پروژه دیگه بودین، زندگی شخصیتون شلوغ شده یا حتی فقط نیاز به یه استراحت داشتین. اما وقتی برمیگردین، ممکنه حس کنین:
اینا همه عادیان مغز ما مثل عضلهست؛ اگه یه مدت تمرین نکنه، یه کم تنبل میشه، ولی با یه برنامه درست میتونین دوباره رو فرم بیاین.
📚 نقشه راه برای بازیابی مهارتها
1⃣ از پایهها شروع کنین 🏗️
چرا؟ مفاهیم پایهای مثل متغیرها، توابع، و حلقهها ستون هر زبان برنامهنویسیان. مرور اینا ذهنتون رو گرم میکنه.
یه پروژه ساده مثل یه ماشینحساب یا یه برنامه To-Do List با زبانی که قبلاً بلد بودین بنویسین.
2⃣ یه پروژه کوچیک و باحال انتخاب کنین 🎯
چرا؟ پروژههای کوچیک اعتماد به نفس رو برمیگردونن و کمک میکنن حس کنین دوباره تو بازی هستین.
یه چیزی بسازین که بهش علاقه دارین، مثلاً یه اسکریپت پایتون برای خودکار کردن یه کار روزمره یا یه صفحه وب ساده با HTML/CSS.
ایده: یه بات ساده برای تلگرام یا یه برنامه که قیمت ارزها رو نشون بده.
3⃣ ابزارها و تکنولوژیها رو مرور کنین 🛠️
چرا؟ اگه مدت زیادی از فریمورکها (مثل Django یا React) دور بودین، ممکنه آپدیتهاشون غافلگیرتون کنه.
مستندات رسمی (مثل docs.djangoproject.com) یا یه دوره کوتاه تو Udemy یا Pluralsight بگیرین. فقط یه بخش رو مرور کنین، نه کلش
نکته: نیازی نیست همهچیز رو از صفر یاد بگیرین؛ فقط تغییرات جدید رو چک کنین.
4⃣ با حل مسائل تمرین کنین 🧩
چرا؟ حل مسائل الگوریتمی ذهنتون رو قوی میکنه و کمک میکنه منطق کدنویسیتون برگرده.
تو سایتهایی مثل HackerRank، Codewars یا LeetCode سوالهای سطح آسان تا متوسط رو حل کنین. روزی ۱-۲ تا کافیه.
ترفند: یه دفترچه یادداشت داشته باشین و راهحلها رو توضیح بدین تا بهتر جا بیفته.
5⃣ کد دیگران رو بخونین 📖
چرا؟ خوندن کدهای باکیفیت بهتون یادآوری میکنه که کد تمیز چطور نوشته میشه.
پروژههای متنباز تو GitHub (مثل پروژههای پایتون یا جاوااسکریپت) رو بررسی کنین. سعی کنین بفهمین چرا یه تابع خاص یا ساختار خاص استفاده شده.
6⃣ با یه پروژه واقعی برگردین تو رینگ 💪
چرا؟ پروژههای واقعی شما رو مجبور میکنن همهچیز رو کنار هم بذارین: کدنویسی، دیباگ، تست، و کار با ابزارها.
یه اپلیکیشن ساده بسازین، مثلاً یه وبسایت شخصی یا یه API با FastAPI. حتی میتونین تو پروژههای متنباز مشارکت کنین.
نکته: از چیزایی که قبلاً بلد بودین شروع کنین تا اعتماد به نفستون برگرده.
7⃣ با بقیه گپ بزنین 👥
چرا؟ حرف زدن با برنامهنویسهای دیگه بهتون انگیزه میده و ایدههای جدید میآره.
تو گروههای تلگرامی، دیسکورد یا انجمنهای مثل Stack Overflow فعال بشین. حتی یه سوال ساده بپرسین یا جواب بدین.
🔍 نکات طلایی برای برگشتن به اوج
صبور باشین: مثل دوچرخهسواریه؛ یه کم طول میکشه تا دوباره تعادل پیدا کنین.
روزی یه کم: لازم نیست روزی ۸ ساعت کد بزنین. حتی ۳۰ دقیقه تمرین روزانه معجزه میکنه.
لذت ببرین: یه پروژه انتخاب کنین که بهش علاقه دارین تا انگیزهتون بالا بمونه.
✍ جمعبندی
دوری از کدنویسی یه اتفاق عادیه و اصلاً به این معنی نیست که مهارتهاتون غیبشون زده با یه برنامه ساده، مثل مرور پایهها، حل مسائل و ساخت پروژههای کوچیک، میتونین دوباره همون برنامهنویس قبراق و سرحال بشین.
➖➖➖➖➖➖➖➖➖➖
🧠 چرا مهارتها زنگ میزنن؟
اول بذارین خیالتون رو راحت کنم: دوری از کدنویسی کاملاً طبیعیه. شاید سر یه پروژه دیگه بودین، زندگی شخصیتون شلوغ شده یا حتی فقط نیاز به یه استراحت داشتین. اما وقتی برمیگردین، ممکنه حس کنین:
مفاهیم پایهای مثل حلقهها یا ساختار دادهها انگار غریبه شدن.
ابزارها و فریمورکهایی که قبلاً باهاشون راحت بودین، حالا گیجکننده به نظر میان.
اعتماد به نفس کدنویسیتون یه کم افت کرده.
اینا همه عادیان مغز ما مثل عضلهست؛ اگه یه مدت تمرین نکنه، یه کم تنبل میشه، ولی با یه برنامه درست میتونین دوباره رو فرم بیاین.
📚 نقشه راه برای بازیابی مهارتها
1⃣ از پایهها شروع کنین 🏗️
چرا؟ مفاهیم پایهای مثل متغیرها، توابع، و حلقهها ستون هر زبان برنامهنویسیان. مرور اینا ذهنتون رو گرم میکنه.
یه پروژه ساده مثل یه ماشینحساب یا یه برنامه To-Do List با زبانی که قبلاً بلد بودین بنویسین.
2⃣ یه پروژه کوچیک و باحال انتخاب کنین 🎯
چرا؟ پروژههای کوچیک اعتماد به نفس رو برمیگردونن و کمک میکنن حس کنین دوباره تو بازی هستین.
یه چیزی بسازین که بهش علاقه دارین، مثلاً یه اسکریپت پایتون برای خودکار کردن یه کار روزمره یا یه صفحه وب ساده با HTML/CSS.
ایده: یه بات ساده برای تلگرام یا یه برنامه که قیمت ارزها رو نشون بده.
3⃣ ابزارها و تکنولوژیها رو مرور کنین 🛠️
چرا؟ اگه مدت زیادی از فریمورکها (مثل Django یا React) دور بودین، ممکنه آپدیتهاشون غافلگیرتون کنه.
مستندات رسمی (مثل docs.djangoproject.com) یا یه دوره کوتاه تو Udemy یا Pluralsight بگیرین. فقط یه بخش رو مرور کنین، نه کلش
نکته: نیازی نیست همهچیز رو از صفر یاد بگیرین؛ فقط تغییرات جدید رو چک کنین.
4⃣ با حل مسائل تمرین کنین 🧩
چرا؟ حل مسائل الگوریتمی ذهنتون رو قوی میکنه و کمک میکنه منطق کدنویسیتون برگرده.
تو سایتهایی مثل HackerRank، Codewars یا LeetCode سوالهای سطح آسان تا متوسط رو حل کنین. روزی ۱-۲ تا کافیه.
ترفند: یه دفترچه یادداشت داشته باشین و راهحلها رو توضیح بدین تا بهتر جا بیفته.
5⃣ کد دیگران رو بخونین 📖
چرا؟ خوندن کدهای باکیفیت بهتون یادآوری میکنه که کد تمیز چطور نوشته میشه.
پروژههای متنباز تو GitHub (مثل پروژههای پایتون یا جاوااسکریپت) رو بررسی کنین. سعی کنین بفهمین چرا یه تابع خاص یا ساختار خاص استفاده شده.
6⃣ با یه پروژه واقعی برگردین تو رینگ 💪
چرا؟ پروژههای واقعی شما رو مجبور میکنن همهچیز رو کنار هم بذارین: کدنویسی، دیباگ، تست، و کار با ابزارها.
یه اپلیکیشن ساده بسازین، مثلاً یه وبسایت شخصی یا یه API با FastAPI. حتی میتونین تو پروژههای متنباز مشارکت کنین.
نکته: از چیزایی که قبلاً بلد بودین شروع کنین تا اعتماد به نفستون برگرده.
7⃣ با بقیه گپ بزنین 👥
چرا؟ حرف زدن با برنامهنویسهای دیگه بهتون انگیزه میده و ایدههای جدید میآره.
تو گروههای تلگرامی، دیسکورد یا انجمنهای مثل Stack Overflow فعال بشین. حتی یه سوال ساده بپرسین یا جواب بدین.
🔍 نکات طلایی برای برگشتن به اوج
صبور باشین: مثل دوچرخهسواریه؛ یه کم طول میکشه تا دوباره تعادل پیدا کنین.
روزی یه کم: لازم نیست روزی ۸ ساعت کد بزنین. حتی ۳۰ دقیقه تمرین روزانه معجزه میکنه.
لذت ببرین: یه پروژه انتخاب کنین که بهش علاقه دارین تا انگیزهتون بالا بمونه.
✍ جمعبندی
دوری از کدنویسی یه اتفاق عادیه و اصلاً به این معنی نیست که مهارتهاتون غیبشون زده با یه برنامه ساده، مثل مرور پایهها، حل مسائل و ساخت پروژههای کوچیک، میتونین دوباره همون برنامهنویس قبراق و سرحال بشین.
#️⃣ #programming #backend
➖➖➖➖➖➖➖➖➖➖
🥷🏻 CHANNEL | GROUP
❤23
Ninja Learn | نینجا لرن
یکی از چالشهایی که خیلی از برنامهنویسها باهاش روبهرو میشن، اینه که بعد از یه مدت طولانی دوری از کدنویسی، حس میکنن مهارتهاشون زنگ زده انگار یه جورایی انگشتاشون دیگه با کیبورد غریبه شده و مفاهیم برنامهنویسی تو ذهنشون غبار گرفته. اما نگران نباشین این…
دوستان ممنون میشم حمایت کنید تایه شروع قوی داشته باشیم 🥰
❤17
سلام علیک و از این حرفا FFmpeg 🔮
اگه تو دنیای برنامهنویسی یا کار با فایلهای ویدیویی یا صوتی (چند رسانه ای) سروکارتون به ویدیو و صدا باشه، حتماً اسم FFmpeg به گوشتون خورده. این ابزار هر کاری بگین با فایلهای صوتی و تصویری میکنه.
تو این پست میخوام یه گشت کامل درمورد FFmpeg بزنیم و ببینیم این ابزار قدرتمند چه قابلیتهایی داره و چرا باید حتما هر برنامهنویس یا تولیدکننده محتوایی بلدش باشه.
🧠 FFmpeg چیه؟
FFmpeg یه پروژه متنباز (open-source) و یه مجموعه نرمافزاریه که برای کار با فایلهای چندرسانهای (ویدیو، صدا، تصویر) طراحی شده. این ابزار از یه سری کتابخونه (مثل libavcodec، libavformat) و ابزارهای خطفرمان (مثل ffmpeg، ffplay، ffprobe) تشکیل شده که میتونن هر نوع فایل چندرسانهای رو بخونن، بنویسن، تبدیل کنن، پخش کنن یا حتی استریم کنن. از فرمتهای قدیمی و غریب گرفته تا جدیدترین کدکها، FFmpeg تقریباً همهچیز رو پشتیبانی میکنه
شروعش برمیگرده به سال ۲۰۰۰، وقتی Fabrice Bellard این پروژه رو راه انداخت و حالا زیر نظر Michael Niedermayer و یه جامعه بزرگ از توسعهدهندهها داره رشد میکنه. اسم FFmpeg از "Fast Forward" و "MPEG" (استاندارد فشردهسازی ویدیو) میاد و نشون میده که این ابزار چقدر سریع و همهکارهست.
📚 قابلیتهای اصلی FFmpeg
FFmpeg یه جعبهابزار عظیمه که برای هر کاری تو حوزه چندرسانهای یه راهحل داره. بیاین مهمترین قابلیتهاش رو بررسی کنیم:
1⃣ تبدیل فرمت (Transcoding) 🎥
میتونین یه فایل ویدیویی یا صوتی رو از یه فرمت به فرمت دیگه تبدیل کنین.
مثال: یه فایل MP4 رو به AVI یا یه فایل WAV رو به MP3 تبدیل کنین.
چرا کاربردیه؟ پشتیبانی از صدها کدک و فرمت (مثل H.264، H.265، AV1، MP3، AAC) باعث میشه برای هر دستگاه یا پلتفرمی فایل مناسب تولید کنین.
2⃣ کدگذاری و دیکد (Encoding/Decoding) 🔢
FFmpeg میتونه ویدیوها و صداها رو کدگذاری (فشردهسازی) یا دیکد (باز کردن فشردهسازی) کنه.
مثال: یه ویدیوی خام رو به H.265 فشرده کنین برای کاهش حجم:
چرا کاربردیه؟ از کدکهای مدرن مثل AV1 و HEVC گرفته تا کدکهای قدیمیتر مثل MPEG-1، همه رو ساپورت میکنه. حتی میتونه با شتابدهندههای سختافزاری (مثل NVIDIA NVENC) کار کنه که سرعتش رو چند برابر میکنه.
3⃣ استریم (Streaming) 📡
میتونین ویدیو و صدا رو به صورت زنده استریم کنین یا فایلها رو برای پخش آنلاین آماده کنین.
مثال: استریم یه وبکم به سرور RTMP:
چرا کاربردیه؟ از پروتکلهای مختلف (RTMP، HLS، MPEG-DASH) پشتیبانی میکنه و برای استریمینگ زنده یا آمادهسازی ویدیو برای پلتفرمهایی مثل یوتیوب عالیه.
4⃣ ویرایش ویدیو و صدا (Editing) ✂️
بدون نیاز به نرمافزارهای گرافیکی، میتونین ویدیوها و صداها رو برش بدین، بچسبونین، یا افکت اضافه کنین.
مثال: برش ۱۰ ثانیه از یه ویدیو:
کارهای دیگه: تغییر اندازه ویدیو، اضافه کردن واترمارک، چرخش، تنظیم صدا، یا حتی ساخت ویدیوی تایملپس از تصاویر.
چرا کاربردیه؟ فیلترهای قدرتمندی مثل
5⃣ استخراج و جاسازی (Muxing/Demuxing) 📦
میتونین جریانهای صوتی، تصویری یا زیرنویس رو از یه فایل جدا کنین یا بذارین تو یه فایل جدید.
مثال: استخراج صدا از ویدیو:
چرا کاربردیه؟ میتونه زیرنویس، صدا یا ویدیو رو جدا کنه یا حتی چندتا جریان رو تو یه فایل ترکیب کنه، بدون نیاز به رمزگذاری دوباره.
اگه تو دنیای برنامهنویسی یا کار با فایلهای ویدیویی یا صوتی (چند رسانه ای) سروکارتون به ویدیو و صدا باشه، حتماً اسم FFmpeg به گوشتون خورده. این ابزار هر کاری بگین با فایلهای صوتی و تصویری میکنه.
تو این پست میخوام یه گشت کامل درمورد FFmpeg بزنیم و ببینیم این ابزار قدرتمند چه قابلیتهایی داره و چرا باید حتما هر برنامهنویس یا تولیدکننده محتوایی بلدش باشه.
🧠 FFmpeg چیه؟
FFmpeg یه پروژه متنباز (open-source) و یه مجموعه نرمافزاریه که برای کار با فایلهای چندرسانهای (ویدیو، صدا، تصویر) طراحی شده. این ابزار از یه سری کتابخونه (مثل libavcodec، libavformat) و ابزارهای خطفرمان (مثل ffmpeg، ffplay، ffprobe) تشکیل شده که میتونن هر نوع فایل چندرسانهای رو بخونن، بنویسن، تبدیل کنن، پخش کنن یا حتی استریم کنن. از فرمتهای قدیمی و غریب گرفته تا جدیدترین کدکها، FFmpeg تقریباً همهچیز رو پشتیبانی میکنه
شروعش برمیگرده به سال ۲۰۰۰، وقتی Fabrice Bellard این پروژه رو راه انداخت و حالا زیر نظر Michael Niedermayer و یه جامعه بزرگ از توسعهدهندهها داره رشد میکنه. اسم FFmpeg از "Fast Forward" و "MPEG" (استاندارد فشردهسازی ویدیو) میاد و نشون میده که این ابزار چقدر سریع و همهکارهست.
📚 قابلیتهای اصلی FFmpeg
FFmpeg یه جعبهابزار عظیمه که برای هر کاری تو حوزه چندرسانهای یه راهحل داره. بیاین مهمترین قابلیتهاش رو بررسی کنیم:
1⃣ تبدیل فرمت (Transcoding) 🎥
میتونین یه فایل ویدیویی یا صوتی رو از یه فرمت به فرمت دیگه تبدیل کنین.
مثال: یه فایل MP4 رو به AVI یا یه فایل WAV رو به MP3 تبدیل کنین.
ffmpeg -i input.mp4 -c:v libx264 -c:a aac output.avi
چرا کاربردیه؟ پشتیبانی از صدها کدک و فرمت (مثل H.264، H.265، AV1، MP3، AAC) باعث میشه برای هر دستگاه یا پلتفرمی فایل مناسب تولید کنین.
2⃣ کدگذاری و دیکد (Encoding/Decoding) 🔢
FFmpeg میتونه ویدیوها و صداها رو کدگذاری (فشردهسازی) یا دیکد (باز کردن فشردهسازی) کنه.
مثال: یه ویدیوی خام رو به H.265 فشرده کنین برای کاهش حجم:
ffmpeg -i input.mp4 -c:v libx265 -c:a copy output.mp4
چرا کاربردیه؟ از کدکهای مدرن مثل AV1 و HEVC گرفته تا کدکهای قدیمیتر مثل MPEG-1، همه رو ساپورت میکنه. حتی میتونه با شتابدهندههای سختافزاری (مثل NVIDIA NVENC) کار کنه که سرعتش رو چند برابر میکنه.
3⃣ استریم (Streaming) 📡
میتونین ویدیو و صدا رو به صورت زنده استریم کنین یا فایلها رو برای پخش آنلاین آماده کنین.
مثال: استریم یه وبکم به سرور RTMP:
ffmpeg -i /dev/video0 -c:v libx264 -preset fast -f flv rtmp://your-server/live
چرا کاربردیه؟ از پروتکلهای مختلف (RTMP، HLS، MPEG-DASH) پشتیبانی میکنه و برای استریمینگ زنده یا آمادهسازی ویدیو برای پلتفرمهایی مثل یوتیوب عالیه.
4⃣ ویرایش ویدیو و صدا (Editing) ✂️
بدون نیاز به نرمافزارهای گرافیکی، میتونین ویدیوها و صداها رو برش بدین، بچسبونین، یا افکت اضافه کنین.
مثال: برش ۱۰ ثانیه از یه ویدیو:
ffmpeg -i input.mp4 -ss 00:00:10 -t 10 output.mp4
کارهای دیگه: تغییر اندازه ویدیو، اضافه کردن واترمارک، چرخش، تنظیم صدا، یا حتی ساخت ویدیوی تایملپس از تصاویر.
ffmpeg -framerate 24 -i image%d.jpg -c:v libx264 output.mp4
چرا کاربردیه؟ فیلترهای قدرتمندی مثل
drawtext
(برای اضافه کردن متن) یا scale
(برای تغییر رزولوشن) داره که کلی کار رو ساده میکنه.5⃣ استخراج و جاسازی (Muxing/Demuxing) 📦
میتونین جریانهای صوتی، تصویری یا زیرنویس رو از یه فایل جدا کنین یا بذارین تو یه فایل جدید.
مثال: استخراج صدا از ویدیو:
ffmpeg -i video.mp4 -vn -c:a mp3 audio.mp3
چرا کاربردیه؟ میتونه زیرنویس، صدا یا ویدیو رو جدا کنه یا حتی چندتا جریان رو تو یه فایل ترکیب کنه، بدون نیاز به رمزگذاری دوباره.
ادامه در پست بعد
❤10🔥2🤩1
6⃣ پخش و پیشنمایش (Playback) 🎬
با ابزار ffplay میتونین فایلهای چندرسانهای رو پخش کنین.
مثال: پخش یه ویدیو:
چرا کاربردیه؟ ffplay یه پخشکننده سادهست که برای تست سریع فایلها یا بررسی خروجیها عالیه.
7⃣ بررسی اطلاعات فایل (Probing) 🔍
با ffprobe میتونین اطلاعات دقیق یه فایل (مثل کدک، بیتریت، رزولوشن) رو ببینین.
مثال:
چرا کاربردیه؟ برای عیبیابی یا آمادهسازی فایلها قبل از پردازش، این ابزار مثل یه میکروسکوپ عمل میکنه.
8⃣ پشتیبانی از شتابدهندههای سختافزاری ⚡
FFmpeg میتونه از GPU (مثل NVIDIA NVENC/NVDEC، VAAPI، یا OpenCL) برای سرعت بخشیدن به کدگذاری و دیکد استفاده کنه.
مثال: کدگذاری با NVENC:
چرا کاربردیه؟ این قابلیت باعث میشه عملیات سنگین مثل کدگذاری 4K خیلی سریعتر انجام بشه.
9⃣ کار با دستگاههای ورودی 🖥️
میتونین از دستگاههای ورودی مثل وبکم یا کارت کپچر مستقیماً داده بگیرین.
مثال: ضبط از وبکم:
چرا کاربردیه؟ برای ضبط زنده یا استریمینگ از سختافزارهای مختلف عالیه.
🔟 فیلترهای پیشرفته 🎨
FFmpeg کلی فیلتر برای ویرایش ویدیو و صدا داره، مثل تغییر روشنایی، تنظیم سرعت پخش، یا اضافه کردن افکت.
مثال: اضافه کردن متن به ویدیو:
چرا کاربردیه؟ این فیلترها انعطاف زیادی بهتون میدن تا بدون نرمافزارهای گرافیکی، تغییرات پیچیدهای اعمال کنین.
✍ جمعبندی
FFmpeg مثل یه جعبهابزار جادوییه که هر کاری تو دنیای چندرسانهای بخواین، میتونه انجام بده. از تبدیل فرمت و کدگذاری گرفته تا استریمینگ، ویرایش، و حتی کار با سختافزارهای خاص، این ابزار همهفنحریفه.
➖➖➖➖➖➖➖➖➖➖
با ابزار ffplay میتونین فایلهای چندرسانهای رو پخش کنین.
مثال: پخش یه ویدیو:
ffplay video.mp4
چرا کاربردیه؟ ffplay یه پخشکننده سادهست که برای تست سریع فایلها یا بررسی خروجیها عالیه.
7⃣ بررسی اطلاعات فایل (Probing) 🔍
با ffprobe میتونین اطلاعات دقیق یه فایل (مثل کدک، بیتریت، رزولوشن) رو ببینین.
مثال:
ffprobe -show_streams input.mp4
چرا کاربردیه؟ برای عیبیابی یا آمادهسازی فایلها قبل از پردازش، این ابزار مثل یه میکروسکوپ عمل میکنه.
8⃣ پشتیبانی از شتابدهندههای سختافزاری ⚡
FFmpeg میتونه از GPU (مثل NVIDIA NVENC/NVDEC، VAAPI، یا OpenCL) برای سرعت بخشیدن به کدگذاری و دیکد استفاده کنه.
مثال: کدگذاری با NVENC:
ffmpeg -i input.mp4 -c:v h264_nvenc output.mp4
چرا کاربردیه؟ این قابلیت باعث میشه عملیات سنگین مثل کدگذاری 4K خیلی سریعتر انجام بشه.
9⃣ کار با دستگاههای ورودی 🖥️
میتونین از دستگاههای ورودی مثل وبکم یا کارت کپچر مستقیماً داده بگیرین.
مثال: ضبط از وبکم:
ffmpeg -i /dev/video0 output.mp4
چرا کاربردیه؟ برای ضبط زنده یا استریمینگ از سختافزارهای مختلف عالیه.
🔟 فیلترهای پیشرفته 🎨
FFmpeg کلی فیلتر برای ویرایش ویدیو و صدا داره، مثل تغییر روشنایی، تنظیم سرعت پخش، یا اضافه کردن افکت.
مثال: اضافه کردن متن به ویدیو:
ffmpeg -i input.mp4 -vf drawtext="text='سلام دنیا':x=20:y=20:fontsize=24" output.mp4
چرا کاربردیه؟ این فیلترها انعطاف زیادی بهتون میدن تا بدون نرمافزارهای گرافیکی، تغییرات پیچیدهای اعمال کنین.
✍ جمعبندی
FFmpeg مثل یه جعبهابزار جادوییه که هر کاری تو دنیای چندرسانهای بخواین، میتونه انجام بده. از تبدیل فرمت و کدگذاری گرفته تا استریمینگ، ویرایش، و حتی کار با سختافزارهای خاص، این ابزار همهفنحریفه.
#️⃣ #programming #backend
➖➖➖➖➖➖➖➖➖➖
🥷🏻 CHANNEL | GROUP
👍7❤🔥3🔥1
Ninja Learn | نینجا لرن
دایرکت کانال فعال شده اگه پیشنهادی یا انتقادی چیزی داشتید میتونید توی این بخش که علامت زدم بهم بگید 🥰
👍4