Ninja Learn | نینجا لرن
1.27K subscribers
105 photos
41 videos
12 files
326 links
یادگیری برنامه نویسی به سبک نینجا 🥷
اینجا چیزایی یاد میگیری که فقط نینجاهای وب‌ بلدن 🤫

📄 Send me post: https://t.iss.one/NoronChat_bot?start=sec-fdggghgebe

👥 ɢʀᴏᴜᴘ: https://t.iss.one/+td1EcO_YfSphNTlk
Download Telegram
🧵 ـGenerator ها در جنگو؛ یه ابزار خاص برای بهینه‌سازی کدها

اگه با پایتون آشنا باشی، احتمالاً می‌دونی که generator ها توی صرفه‌جویی حافظه و تولید داده به صورت lazy خیلی کاربرد دارن. اما این ابزار توی جنگو چطوری استفاده می‌شه؟ چجوری می‌تونیم ازشون بیشترین بهره رو ببریم؟ بیا با هم بررسی کنیم.

💡 ـGenerator چیه؟
ـGenerator یه نوع iterator خاصه که وقتی نیاز داری داده تولید می‌کنه، نه اینکه کل داده رو یه‌جا توی حافظه نگه داره. توی جنگو این ابزار وقتی مفید می‌شه که بخوای با داده‌های بزرگ کار کنی.

مثلاً:
◀️ کار با QuerySetهای سنگین
◀️ پردازش Streamهای داده‌ای
◀️ تولید گزارش‌های حجیم

🏗 چرا توی جنگو به generator نیاز داریم؟

تصور کن یه جدول دیتابیس با میلیون‌ها رکورد داری و باید اطلاعات رو به مرور پردازش کنی. اگه همه رکوردها رو یه‌جا لود کنی، سرور به احتمال زیاد می‌ترکه. اینجا generator ها به دادت می‌رسن. Lazy Evaluation یعنی فقط همون چیزی که نیاز داری رو تولید کن و حافظه رو با چیزای اضافی پر نکن.

استفاده از generator توی QuerySet

ـQuerySetهای جنگو به صورت پیش‌فرض lazy هستن. این یعنی تا وقتی که واقعاً نیاز نباشه، کوئری به دیتابیس نمی‌زنه. ولی می‌تونی این فرآیند رو با generatorها بهینه‌تر کنی.

مثال:
from django.db.models import QuerySet  

def get_large_data(queryset: QuerySet):
for obj in queryset.iterator():
yield process_object(obj)

def process_object(obj):
# پردازش رکورد
return obj

اینجا از متد iterator() استفاده کردیم که یه generator می‌سازه و باعث می‌شه کوئری به صورت chunk به chunk پردازش بشه.

🌊 ـStream کردن داده‌ها با generator
اگه بخوای یه فایل CSV بزرگ برای دانلود بسازی، generator یه ابزار طلاییه.
مثال:
import csv  
from django.http import StreamingHttpResponse

def stream_csv(queryset):
def generate():
yield ['Header1', 'Header2', 'Header3']
for obj in queryset.iterator():
yield [obj.field1, obj.field2, obj.field3]

response = StreamingHttpResponse(generate_csv(generate()), content_type='text/csv')
response['Content-Disposition'] = 'attachment; filename="data.csv"'
return response

def generate_csv(generator):
for row in generator():
yield ','.join(str(cell) for cell in row) + '\n'

اینجا به جای ساختن کل CSV توی حافظه، داده‌ها رو به صورت real-time تولید می‌کنیم.

🔸 نکات مهم

ـAvoid Overuse
اگه حجم داده‌ها خیلی کم باشه، استفاده از generator صرفاً پیچیدگی کد رو زیاد می‌کنه.


ـCombine with Chunking
اگه با دیتابیس‌های بزرگ کار می‌کنی، استفاده از generator به همراه متدهایی مثل iterator() یا chunked() توی QuerySet می‌تونه حسابی عملکرد رو بهینه کنه.
ـError Handling
حواست باشه که generatorها وقتی یه خطا پیش بیاد، از ادامه کار متوقف می‌شن. اگه نیاز داری عملیاتت ادامه پیدا کنه، باید exceptionها رو مدیریت کنی.
ـPipeline-like Processing
توی پروژه‌های پیچیده‌تر می‌تونی generatorها رو به هم chain کنی و مثل یه pipeline داده‌ها رو پردازش کنی.


جمع‌بندی
ـgeneratorها یه ابزار قدرتمند برای مدیریت منابع هستن، به شرطی که بدونی کجا و چطوری ازشون استفاده کنی. مخصوصاً توی پروژه‌های سنگین جنگو که حجم داده‌ها خیلی زیاده، این ابزار می‌تونه یه برگ برنده باشه.

امید وارم مفید بوده باشه :) ❤️

#django #برنامه_نویسی #پایتون


🔆 CHANNEL | GROUP
👍116
خب خب خب Django Channels چیه؟ و چرا من ازش خوشم نمیاد

قبل از اینکه با هم بریم سراغ Django Channels، یه کم درباره WebSocket بگیم که اصلاً بدونیم داریم درباره چی حرف می‌زنیم. خب، WebSocket یه پروتکل که بهت اجازه میده ارتباط دوطرفه و دائمی بین کلاینت و سرور داشته باشی. یعنی چی؟ یعنی مثلاً تو یه اپلیکیشن چت، به جای اینکه هر چند ثانیه یه بار درخواست بفرستی "چیزی جدید اومده؟"، سرور خودش هر وقت یه پیام جدید داشت، بلافاصله می‌فرسته سمتت 🚀.

حالا Django Channels چی میگه؟ 🤔
ـDjango Channels یه ابزار تو اکوسیستم Djangoئه که میاد پشتیبانی از WebSocket، پروتکل‌های real-time و کارای async رو به پروژه‌هات اضافه می‌کنه. به زبان ساده، اگه Django عادی رو یه "خیابون یک‌طرفه" فرض کنیم، Channels میاد این خیابون رو دوطرفه می‌کنه. این یعنی می‌تونی کارایی مثل:

چت real-time 💬


نوتیفیکیشن‌های فوری 🔔


استریم داده (مثل قیمت‌های ارز دیجیتال) 📈


و...

رو خیلی راحت‌تر با Django انجام بدی.

خب پس مشکلش چیه؟ چرا من ازش خوشم نمیاد؟ 🤷‍♂️

از دور که نگاه می‌کنی، Channels خیلی جذاب به نظر میاد، ولی وقتی می‌خوای باهاش کارکنی، مشکلات خودش رو نشون میده:

1⃣ پیچیدگی توی تنظیمات 😵‍💫
ـDjango همیشه به خاطر سادگی معروف بوده، ولی Channels میاد این سادگی رو خراب می‌کنه خیلی خراب میکنه. باید ASGI رو راه بندازی، Redis نصب کنی، routing یاد بگیری، و کلی تنظیمات دیگه انجام بدی. یه پروژه ساده که با Django راحت بود، یهو برات میشه یه جنگل از تنظیمات.

نکته: از Django 4.0 به بعد، پشتیبانی از ASGI مستقیم داخل هسته Django اومده، پس برای پروژه‌های ساده شاید نیاز نباشه کل پروژه رو وابسته به Channels کنی.

2⃣ وابستگی به Redis 🤦‍♂️
یکی از مشکلات بزرگ Channels اینه که برای مدیریت eventها و ارتباط‌ها حتماً نیاز به Redis داره. خب چرا؟ دلیلش اینه که Redis به‌عنوان message broker استفاده میشه تا پیام‌ها بین کلاینت‌ها و سرور مدیریت بشه. ولی اگه پروژه کوچیک باشه، این وابستگی می‌تونه دردسرساز بشه.

جایگزین: می‌تونی از RabbitMQ یا حتی راه‌حل‌های ساده‌تر مثل In-Memory Layers برای پروژه‌های سبک استفاده کنی.


3⃣ محدودیت توی scale کردن 😩
اگه پروژه کوچیک باشه، Channels بد نیست. ولی وقتی تعداد کاربران زیاد میشه و حجم درخواست‌ها بالا میره، Channels سریع از نفس می‌افته. این محدودیت بیشتر به خاطر پیچیدگی WebSocket و محدودیت‌های سرورهای تک رشته ای هست تا خود Channels. برای پروژه‌های بزرگ و real-time محور، ابزارای دیگه‌ای مثل Socket.IO یا FastAPI خیلی بهتر عمل می‌کنن.

4⃣ مشکلات performance 🚨
حتی اگه پروژه خیلی هم بزرگ نباشه، Channels برای real-time پروژه‌های سنگین خوب عمل نمی‌کنه. کارای پیچیده async و ارتباطات real-time می‌تونن سرور رو داغون کنن. البته با تنظیم درست workerها و Redis channel layers می‌تونی بخشی از این مشکلات رو کم کنی، ولی باز هم کار اضافه‌ست.

5⃣ کمبود مستندات و منابع آموزشی درست و حسابی 📚
یکی دیگه از مشکلات اینه که منابع آموزشی کامل و به‌روزی برای Channels خیلی کمه. هر وقت گیر کنی، یا باید بری توی GitHub دنبال issueها، یا دست به دامن دیگران بشی. این باعث میشه زمان زیادی صرف حل مشکلات کنی.

خب حالا راه‌حل چیه؟ 💡
اگه بخوای real-time کار کنی، اینا می‌تونن گزینه‌های بهتری باشن:

ـFastAPI: اگه دنبال سرعت، سادگی و پرفورمنس خوب هستی، FastAPI انتخاب فوق‌العاده‌ایه. با WebSocket خیلی راحت کار می‌کنه و خبری از دردسرای Channels نیست 🚀.

ـSocket.IO: این یکی برای پروژه‌های real-time شاهکاره. خیلی ابزارای متنوع داره و با Node.js هم عالی مچ میشه.


جمع‌بندی 🎯
ـDjango Channels می‌تونه برای پروژه‌های کوچیک و ساده مناسب باشه، ولی اگه بحث scale، پرفورمنس یا راحتی کار مطرح باشه، اصلاً گزینه خوبی نیست. من از پیچیدگی‌ها و محدودیت‌هاش خسته شدم و به جای اون سراغ ابزارای دیگه رفتم.
نظر تو چیه؟ Django Channels تا حالا اذیتت کرده یا ازش خوشت میاد؟ بگو ببینم چی تو ذهنت می‌گذره🧐


#programming #web #django



🔆 CHANNEL | GROUP
👍251👎1
تا حالا کلی مطالب خفن و کاربردی تو کانال NinjaLearn براتون آماده کردیم و الان صدها مطلب مختلف و جذاب داریم.

از اونجایی که مطالب کانال خیلی متنوع و زیاد شده، تصمیم گرفتیم یه دسته‌بندی مرتب و منظم برای همه‌ی پست‌ها داشته باشیم تا شما عزیزان راحت‌تر بتونید محتوای مورد نظرتون رو پیدا کنید

این شما و این لیست دسته‌بندی‌های کانال🔻:

🦫 #go: آموزش‌ها و نکات کاربردی زبان گو

💻 #programming: مطالب برنامه نویسی

🐍 #python: ترفندها و نکات پایتونی

🦄 #django: مطالب فریم‌ورک جنگو

⚡️ #fastapi: مطالب فریم ورک فست

🌐 #web: مطالب مرتبط به وب

📡 #network: مطالب مرتبط به شبکه

🗂️ #db: معرفی و نکات دیتابیس

🔖 #reference: معرفی مقاله و ویدیو

📢 #notif: اطلاع رسانی ها

#question: سوالات جالب در برنامه نویسی

🎊 #event: رویداد هایی که معرفی کردیم

🎬 #movie: معرفی فیلم و سریال

📚 #book: معرفی کتاب‌های تخصصی

🤖 #AI: مطالب مرتبط به هوش مصنوعی

📊 #ml: مطالب مرتبط به یادگیری ماشین

🛠️ #backend: آموزش‌ها و ترفندهای بک‌اند

🔒 #security: نکات امنیتی

#devops: مطالب مرتبط به دواپس

📺 #YouTube: ویدیوهای چنل یوتیوب ما

🌏 #geo: تکنولوژی های جغرافیایی


هر کدوم از این هشتگ‌ها برای یه موضوع خاص طراحی شده تا شما به راحتی بتونید محتوای مورد نظرتون رو پیدا کنید. دیگه لازم نیست کلی تو کانال بگردید 😊

اگه موضوع جدیدی به مطالب کانال اضافه بشه، حتماً تو این لیست قرار می‌گیره


راستی میتونید بنر کانال رو برای دوستاتون هم بفرستید تا اونا هم به جمع ما بپیوندن و از این مطالب مفید استفاده کنن 😉

NinjaLearn Banner 🥷🤝


#category



🔆 CHANNEL | GROUP
22👍1👎1🔥1
جنگو کنده، پس نباید استفاده کنیم؟ 🙂‍↔️

یکی از بحث‌های همیشگی توی گروه های جنگو اینه که "جنگو کنده، پس بریم سمت FastAPI یا Go یا ...". این حرفو زیاد شنیدم، خودمم یه زمانی فکر می‌کردم سرعت، همه‌چیزه ولی بیاین یه بار منطقی بررسی کنیم، بدون تعصب.

چرا میگن جنگو کنده؟
خب راستشو بخواین، جنگو واقعا کنده (نسبت به فریم‌ورک‌های async بیس مثل FastAPI و زبان‌های کامپایلری مثل Go که توی I/O bound حرف اولو میزنن). ولی چرا؟

جنگو سینکروسه 🥸
جنگو از اساس برای وب‌اپلیکیشن‌های سنتی طراحی شده(طبیعیم هست چون ۲۰ سال پیش ساخته شد اون موقع مفهومی به اسم async به این صورت نبود).
ولی فریم‌ورک‌هایی مثل FastAPI می‌تونن همزمان چند درخواست رو مدیریت کنن (به لطف async).

Overhead بالای ORM 🏋️‍♂️
‏ORM جنگو سنگینه. هر کوئری که میزنی، کلی پردازش اضافه انجام میده تا کارتو راحت کنه، ولی همین باعث میشه کندتر از ORMهای سبک‌تر باشه.

Middleware و Request Cycle پیچیده‌تره 🌀

جنگو یه سری پردازش‌های اضافه برای هر درخواست انجام میده (مانند middleware ها، سیگنال‌ها، template rendering و ...)، که باعث میشه به طور طبیعی کمی کندتر باشه.

پس چرا بازم از جنگو استفاده کنیم؟
حالا که جنگو کنده، یعنی نباید سمتش بریم؟ نه بابا بذار تجربه خودمو بگم.

1⃣ سرعت، همیشه مهم‌ترین فاکتور نیست
اکثر پروژه‌ها، گلوگاه سرعت، فریم‌ورک نیست، بلکه دیتابیس، شبکه، و لاجیک‌های بیزینسی هستن. یه اپلیکیشن CRUD ساده که روزی ۱۰۰۰ تا درخواست داره، با FastAPI یا جنگو، تفاوت محسوسی نداره.

2⃣ توسعه سریع‌تر = زمان و پول بیشتر
جنگو کلی چیز آماده داره. سیستم مدیریت کاربر، فرم‌ها، ORM، ادمین پنل، و کلی ماژول دیگه. این یعنی تو به جای ساختن همه‌چی از صفر، فقط تمرکزت روی بیزینس لاجیکه. توسعه سریع‌تر = هزینه کمتر.

3⃣ امنیت، یکپارچگی، و قابلیت اطمینان
جنگو به طور پیش‌فرض مقاوم در برابر حملات XSS، CSRF، SQL Injection و غیره‌ست. ولی FastAPI؟ باید خودت امنیت رو درست کنی و Middleware بنویسی، که اگه اشتباه کنی، فاجعه میشه

کی بریم سمت FastAPI یا Go یا هرچیز سریع؟

1⃣ وقتی واقعا به Async نیاز داری
اگه داری یه چت‌اپ، وب‌ساکت، یا یه سیستم پردازش سنگین با درخواست‌های همزمان بالا می‌نویسی، FastAPI و Go گزینه‌های بهتری هستن.

2⃣ وقتی هر میلی‌ثانیه مهمه
توی سرویس‌های real-time مثل سیستم‌های تریدینگ، گیمینگ، یا پردازش داده سنگین، Go و Rust گزینه‌های بهتری هستن، چون کامپایل میشن و خیلی سریع‌تر از پایتون اجرا میشن.

پس چی کار کنیم؟
اگه سرعت برات مهمه: Go بزن Java بزن یا ...


اگه یه API سبک و سریع لازم داری: FastAPI بزن


اگه می‌خوای سریع یه اپلیکیشن کامل و امن بالا بیاری: Django بهترین گزینه‌ست


سرعت، همه چیز نیست، بلکه بستگی داره که چه چیزی برات مهم‌تره و نیاز داری بهش

خوشحال میشم نظرتون رو بشنوم
تو کامنتای همین پست بگید 👇


#️⃣ #programming #django #backend



🥷 CHANNEL | GROUP
👍324
چرا نباید لاجیک پروژه رو تو سریالایزرهای DRF پیاده‌سازی کنیم؟ 🚫

یه موضوع مهم هست که چرا نباید لاجیک پروژه‌مون رو تو سریالایزرها پیاده‌سازی کنیم؟ خیلی از افرادی که میشناسم متاسفانه اینکارو میکنن (پیاده سازی لاجیک توی سریالایزر ها) اگه شماهم حزو این دسته افراد هستید این پست براتون مناسبه

اول از همه سریالایزر تو DRF چیه؟

سریالایزرها تو DRF مسئول تبدیل داده‌ها بین فرمت‌های مختلف (مثل JSON و مدل‌های Django) هستن. کارشون اینه که داده‌ها رو بگیرن، اعتبارسنجی (validation) کنن و به شکل مناسب تحویل بدن. مثلاً یه مدل User رو به JSON تبدیل می‌کنن یا برعکس. تا اینجا همه‌چیز اوکیه، ولی مشکل از جایی شروع می‌شه که بخوایم لاجیک اصلی پروژه رو تو همین سریالایزرها پیاده سازی کنیم.

🚫 چرا این کار بده؟
بعضی‌ها عادت دارن تو متدهای سریالایزر (مثل to_representation یا validate) لاجیک‌های پیچیده بنویسن، مثلاً محاسبات، فیلتر کردن داده‌ها یا حتی آپدیت دیتابیس. اما این کارا چندتا مشکل بزرگ به وجود میاره

1⃣ نقض اصل Single Responsibility:
سریالایزرها برای تبدیل و اعتبارسنجی داده‌ها طراحی شدن، نه برای مدیریت لاجیک پروژه.
وقتی لاجیک رو اونجا می‌نویسین، کدتون از یه سریالایزر ساده تبدیل میشه به سریالایزر خیلی گنده که بعداً نگهداریش سخت می‌شه.

2⃣ کاهش Readability و Testability:
اگه لاجیک تو سریالایزر باشه، پیدا کردنش تو پروژه سخت‌تره و تست کردنش هم پیچیده می‌شه. مثلاً برای تست یه محاسبه، باید کل سریالایزر رو تست کنین، نه فقط اون لاجیک خاص.

3⃣ مشکلات Scalability:
تو پروژه‌های بزرگ، وقتی لاجیک‌ها تو سریالایزرها پخش بشن، دیگه نمی‌تونین به راحتی تغییرشون بدین یا جابه‌جاشون کنین. یه تغییر کوچیک تو لاجیک ممکنه کل API رو به هم بریزه.

4⃣ وابستگی بیش از حد:
سریالایزرها به مدل‌ها و داده‌ها وابسته‌ ان. اگه لاجیک پروژه رو اونجا بذارین، هر تغییری تو مدل‌ها یا ساختار داده‌ها می‌تونه لاجیک‌تون رو خراب کنه.

5⃣ سخت شدن دیباگ:
وقتی یه باگ پیش میاد، نمی‌دونین مشکل از تبدیل داده‌ست یا از لاجیک پروژه، چون همه‌چیز قاطی شده.

سخن اخر 🗣
پیاده‌سازی لاجیک پروژه تو سریالایزرهای DRF مثل اینه که بخوای با چاقو سوپ بخوری؛ می‌شه، ولی چرا؟! سریالایزرها برای تبدیل و اعتبارسنجی داده‌ها طراحی شدن، نه برای نگه داشتن لاجیک پیچیده. با انتقال لاجیک به مدل‌ها یا سرویس‌ها، کدتون تمیزتر، قابل‌نگهداری‌تر و حرفه‌ای‌تر می‌شه. دفعه بعد که خواستین تو سریالایزر لاجیک بنویسین، یه لحظه وایسید و بگین: اینجا جای این کارا نیست 😊

#️⃣ #backend #drf #django #api


🥷 CHANNEL | GROUP
👍203
خب خب آپدیت جدید جنگو اینجاست، ببینیم چه تغییراتی داشته🔥🛠
چند روز پیش (۲ آوریل) آپدیت جدید جنگو با ورژن ۵.۲ منتشر شد. این نسخه LTS هست و تا آوریل ۲۰۲۸ پشتیبانی میشه. توی این نسخه تغییرات بیشتر مربوط به زیرساخت هایی مثل دیتابیس و shell جنگو بودن. بریم بررسیشون کنیم.

1️⃣ ایمپورت خودکار مدل ها توی shell
از این نسخه به بعد وقتی وارد shell جنگو میشین مدل هاتون به صورت خودکار ایمپورت میشن. این ویژگی بهتون کمک میکنه که زمان کمتری برای ایمپورت کردن بزارین و باعث صرفه جویی در زمان میشه.

2️⃣ پشتیبانی از کلید اصلی مرکب(Composite Primary Key)

با اضافه شدن CompositePrimaryKey، میتونین چند فیلد رو به عنوان کلید اصلی مشخص کنید. قبلا این کار نیاز به تنظیمات دستی توی سطح دیتابیس داشت اما الان به صورت رسمی پشتیبانی میشه و مدیریتش ساده تره.

3️⃣ ساده تر شدن شخصی سازی BoundField
توی این نسخه میتونید کلاس BoundField رو به راحتی توی سطح پروژه یا فرم شخصی سازی کنید. با ایجاد یک کلاس که از BoundField ارث بری میکنه و اعمال تغییرات مورد نظر میتونید اون رو به فیلد های فرم هاتون اختصاص بدین.
‏BoundField همون چیزیه که وقتی توی قالب می‌نویسید form.name، پشت صحنه وظیفه داره اون فیلد رو به HTML تبدیل کنه، مقدارش رو بذاره، ارورهاش رو نشون بده و...
یجورایی رابط بین فرم و فیلد واقعی‌ توی قالبه.


4️⃣ فیلتر های Facet توی پنل ادمین
توی پنل ادمین جنگو، با فعالسازی ویژگی ModelAdmin.show_facets، میتونید تعداد آیتم های توی هر فیلتر رو ببینید. این قابلیت باعث میشه اطلاعات پنل ادمین رو راحت تر مدیریت کنید.

5️⃣ فیلد های تولید شده(Generated Fields)

با معرفی GeneratedFields، میتونید فیلد هایی تعریف کنید که مقدارشون بر اساس مقدار سایر فیلد های مدل محاسبه و ثبت میشه. این ویژگی بهتون این امکان رو میده که ستون های محاسبه شده توی دیتابیس قرار بدین.

6️⃣ مقادیر پیش فرض در سطح دیتابیس

با استفاده از پارامتر db_default توی فیلد های مدل، مقادیر پیش فرض مستقیما توسط دیتابیس اعمال میشن. این ویژگی باعث بهبود عملکرد و سازگاری بیشتر با دیتابیس های مختلف میشه.

⏺️ با استفاده از لینک زیر میتونید اطلاعات بیشتری درمورد این آپدیت کسب کنید⚡️

Django 5.2 release notes

#django #backend #python


🥷🏻 CHANNEL | GROUP
16👍3
خب خب خب، کامند inspectdb توی جنگو⚙️
احتمالا به این فکر کردین که چطوری میشه از جدول های یه دیتابیس آماده توی جنگو استفاده کرد. راه حلش این ابزاره.

‏inspectdb چیه
؟
با استفاده از inspectdb، جنگو میتونه ساختار جدول های دیتابیس رو بررسی کنه و یه فایل مدل جنگو(مثل model.py) تولید کنه و توی خروجی نمایش بده. این یعنی دیگه نیاز نیست برای دیتبایس قدیمیتون دستی مدل بنویسید، جنگو اینکارو هم خودش انجام میده.
python manage.py inspectdb > models.py

شما حتی میتونید فقط یه جدول رو بررسی و تبدیل کنید:
python manage.py inspectdb my_table > models.py


این ابزار میتونه توی این مواقع کمکتون کنه:
1️⃣ وقتی روی یه دیتابیس قدیمی یا پروژه ی legacy کار میکنید.
2️⃣ موقع مهاجرت از یه سیستم دیگه به جنگو.
3️⃣ وقتی میخوان بدون نوشتن کلی کد دستی با یه دیتابیس خارجی کار کنید.

نکته مهم⚠️:
کدی که این ابزار تولید میکنه همیشه تمیز و ایده‌آل نیست. بهتره بعد از ساخت، مدل‌ها رو یه دور بازبینی و شخصی‌سازی کنید. جنگو خودش هم توی فایل تولید شده این هشدار رو مینویسه.


⏺️ برای اطلاعات بیشتر میتونید به داکیومنت جنگو مراجعه کنید:
inspectdb در جنگو

#⃣ #django #python #db


🥷🏻 CHANNEL | GROUP
👍15