Circuit Tracing от Anthropic: как мы в R&D by red_mad_robot решили заглянуть внутрь LLM при использовании в RAG-пайплайнах
Ищем галлюцинации под микроскопом!
29 мая Anthropic выложили в open-source свои инструменты Circuit Tracing методологию механической интерпретируемости, которую мы в R&D подразделении red_mad_robot первыми применили для решения практической задачи детекции галлюцинаций в RAG-системах!
В начале 2025 года, когда я возглавил новое R&D направление, я поставил амбициозную задачу: не просто оценивать качество ответов LLM "снаружи", а заглянуть внутрь процесса генерации и понять, откуда берутся галлюцинации.
Почему именно RAG-пайплайны и Circuit Tracing?
Проблема была очевидна: RAG-системы часто смешивают информацию из контекста с "внутренними знаниями" модели, создавая правдоподобные, но неточные ответы
Существующие методы детекции работают post-factum, а нам нужно было понять механизм принятия решений в реальном времени
Circuit Tracing от Anthropic давал именно это возможность построить атрибуционные графы и проследить, как токены входного контекста влияют на финальный ответ модели
Конкретные результаты нашего исследования
85% точность детекции галлюцинаций вот что мы получили на тестовом датасете с нашей реализацией на базе Qwen2.5-7B.
Как отмечает наш исследователь Ирина Кошкина:
"Основная идея — измерение доли влияния от токенов входа, соответствующих контексту, среди всего влияния от всех активных токенов."
Наша метрика Groundedness включает:
- Контекстную долю влияния (Gctx)
- Replacement Score — качество признаков vs ошибок
- Completeness Score — полнота объяснения через атрибуционный граф
Технические вызовы и решения
Cross-Layer Transcoders (CLT) стали ключевым компонентом системы
Вместо анализа отдельных слоев мы научились отслеживать влияние признаков между несколькими архитектурными уровнями трансформера
Основные проблемы, которые пришлось решать:
1. Вычислительная сложность процедура анализа на порядки медленнее генерации
2. Зависимость от качества обученного транскодера
3. Токен-уровневое сопоставление, приводящее к ложным срабатываниям
Но результат того стоил мы получили рабочий инструмент для анализа внутренних процессов модели во время генерации ответов в RAG-системах
Отдельное спасибо отделу маркетинга red_mad_robot за подготовку детальной статьи оформления и валидации на Хабре
Отдельное спасибо Саше (@dealerAI) за экспертную валидацию нашей гипотезы на старте проекта
Когда предлагаешь исследовать "атрибуционные графы для детекции галлюцинаций в RAG", поддержка опытных друзей по цеху критически важна для получения ресурсов и мотивации команды
Полный технический разбор с кодом, формулами и результатами экспериментов доступен в нашей статье на Хабре закидываем в закладки и ставим +
Ищем галлюцинации под микроскопом!
29 мая Anthropic выложили в open-source свои инструменты Circuit Tracing методологию механической интерпретируемости, которую мы в R&D подразделении red_mad_robot первыми применили для решения практической задачи детекции галлюцинаций в RAG-системах!
В начале 2025 года, когда я возглавил новое R&D направление, я поставил амбициозную задачу: не просто оценивать качество ответов LLM "снаружи", а заглянуть внутрь процесса генерации и понять, откуда берутся галлюцинации.
Почему именно RAG-пайплайны и Circuit Tracing?
Проблема была очевидна: RAG-системы часто смешивают информацию из контекста с "внутренними знаниями" модели, создавая правдоподобные, но неточные ответы
Существующие методы детекции работают post-factum, а нам нужно было понять механизм принятия решений в реальном времени
Circuit Tracing от Anthropic давал именно это возможность построить атрибуционные графы и проследить, как токены входного контекста влияют на финальный ответ модели
Конкретные результаты нашего исследования
85% точность детекции галлюцинаций вот что мы получили на тестовом датасете с нашей реализацией на базе Qwen2.5-7B.
Как отмечает наш исследователь Ирина Кошкина:
"Основная идея — измерение доли влияния от токенов входа, соответствующих контексту, среди всего влияния от всех активных токенов."
Наша метрика Groundedness включает:
- Контекстную долю влияния (Gctx)
- Replacement Score — качество признаков vs ошибок
- Completeness Score — полнота объяснения через атрибуционный граф
Технические вызовы и решения
Cross-Layer Transcoders (CLT) стали ключевым компонентом системы
Вместо анализа отдельных слоев мы научились отслеживать влияние признаков между несколькими архитектурными уровнями трансформера
Основные проблемы, которые пришлось решать:
1. Вычислительная сложность процедура анализа на порядки медленнее генерации
2. Зависимость от качества обученного транскодера
3. Токен-уровневое сопоставление, приводящее к ложным срабатываниям
Но результат того стоил мы получили рабочий инструмент для анализа внутренних процессов модели во время генерации ответов в RAG-системах
Отдельное спасибо отделу маркетинга red_mad_robot за подготовку детальной статьи оформления и валидации на Хабре
Отдельное спасибо Саше (@dealerAI) за экспертную валидацию нашей гипотезы на старте проекта
Когда предлагаешь исследовать "атрибуционные графы для детекции галлюцинаций в RAG", поддержка опытных друзей по цеху критически важна для получения ресурсов и мотивации команды
Полный технический разбор с кодом, формулами и результатами экспериментов доступен в нашей статье на Хабре закидываем в закладки и ставим +
Хабр
Circuit Tracing: как заглянуть в галлюцинации модели и найти там смысл
Всем привет! Меня зовут Ирина, я NLP-инженер в red_mad_robot, занимаюсь научными исследованиями интерпретируемости LLM и анализом механизмов внутренних вычислений моделей, чтобы применять полученные...
🔥42❤16👍13🤔1