Neural Deep
7.6K subscribers
301 photos
44 videos
3 files
193 links
Head of AI redmadrobot.ru

6 лет: 0>>>Head of AI
AI Infrastructure | Production RAG

Local inference
RAG (2M+ книг)
RAG chat bot (5М+ токенов)
B2B платформа (10+ клиентов)
B2C gptdaisy.com (100k MAU)

Код, кейсы
github.com/vakovalskii | @neuraldeepchat
Download Telegram
Forwarded from Dealer.AI
Microsoft показали списки профессий, которые больше всего и меньше всего подвержены риску быть замененными ИИ.

Data scientist 0.77 😳

В массажисты, я пойду пусть меня научат(с) 😁
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
😁27💯6🤔22
Forwarded from Daisy news
🆕 Обновление в Daisy

Добавили новые AI-модели для работы с текстом, написания кода и продвинутых рассуждений.

Вот что появилось:

🤖 ChatGPT-4.1 — быстро пишет код и анализирует данные.

🤖 GPT-o4-mini — рассуждает и предлагает идеи.

🤖 Gemini 2.5 Flash — быстро и точно решает логические задачи.

🤖 Grok-3 — оперативно отвечает на вопросы и генерирует тексты.

🤖 Claude Sonnet-4 — пишет и проверяет код, упрощает тестирование.

Подробности о лимитах использования моделей смотри в личном кабинете в разделе «Тарифы». Пробуй новые возможности Daisy и делись впечатлениями в комментариях.

⚡️ Daisy — AI-сервис для удобной работы с передовыми LLM. Работает без VPN.
🌼 @daisygpt_bot
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10🔥7🤣51
40k Telegram каналов: массовая аналитика на RTX 4090 за 48 часов

Задача на 1.5 млрд токенов
«Вошли и вышли, приключение на 20 минут»

Попали в руки 40 000 Telegram каналов

Задача: привести к единой таксономии через анализ постов, описаний и названий каналов

Масштаб
2 млн постов (по 20-50 с каждого канала)
3 млрд символов → после очистки 1.5 млрд токенов

Нужны метатеги + категории для каждого канала

Железо vs Облако: честный расчёт

GPT-4o-mini в облаке: $150 (≈12 200₽) за весь объём, мгновенно

RTX 4090 сборка (250k₽): 48 часов непрерывной работы

Точка окупаемости: 20+ экспериментов (250k₽ / 12k₽ = 20 запусков)

Двухэтапная архитектура

Этап 1 Извлечение метатегов
Задача: из постов канала получить топ-10 тегов, описывающих тематику

{
"channel_tags": [
"искусственный_интеллект",
"машинное_обучение",
"нейросети"
]
}


Алгоритм
1. Канал → фильтруем посты (мин. 50 символов)
2. Батчи по 30 постов → T-lite-it-1.0 → 3-5 тегов за запрос
3. До 3 батчей на канал (макс. 20 тегов)
4. Частотный анализ → топ-10 финальных тегов канала

Построение таксономии из реальных данных

Создание финальной таксономии:
1. Частотный анализ: собрал ВСЕ метатеги → выбрал топ-1000 самых частых
2. Claude Opus/Sonnet 4: скормил топ-1000 тегов → получил 50 базовых категорий
3. Deep Research: дополнил таксономию до 60 категорий через анализ пропущенных тематик
4. Финальный список: 60 категорий покрывают 95% всех каналов

Этап 2: Категоризация по таксономии
Задача: метатеги канала → 2-3 категории из 60 выведенных из данных

Схема сопоставления
{
"mappings": [{
"channel_name": "Neural Deep",
"categories": ["artificial_intelligence", "technology_innovation"]
}]
}


Алгоритм:
1. Загружаем готовые метатеги каналов
2. Батчи по 15 каналов → промпт с таксономией (60 категорий из реальных данных)
3. T-lite-it-1.0 выбирает подходящие категории из выведенного списка
4. Результат: channel_info + metaTags + taxonomy_categories

Точность спросите вы?

Проверил 1000 каналов вручную:
- 79% точность категоризации — канал в правильной категории
- 86% точность метатегов — теги релевантны контенту

Что работает отлично:
IT/Tech каналы → точные теги и категории
Новостные каналы → четкая категоризация
Образовательный контент → стабильное качество

Проблемные зоны:
Мемные каналы → размытые категории
Микс-контент → сложно выбрать главную тему
Рекламные посты → портят всё тегирование канала
Каналы с частой рекламой дают нерелевантные теги

Технические детали

Модель: T-lite-it-1.0 — русская версия Qwen2.5-7B от T-Tech
Железо: RTX 4090 (24GB VRAM) + AMD Ryzen 3
Потоки: 10 для метатегов, 20 для категоризации
Guided JSON: xgrammar для стабильного парсинга
vLLM



Еще раз про экономику

Разовая задача: Облако в 20 раз дешевле
20+ экспериментов: Железо окупается
Постоянная аналитика: Железо экономит x5-10

Преимущества собственного железа:
- Полный контроль процесса
- Эксперименты без страха за бюджет
- Конфиденциальность данных
- Возможность тонкой настройки


48 часов работы GPU → структурированная база с:
- Метатегами для каждого канала (из реальных постов)
- Таксономией, выведенной из топ-1000 тегов (не абстрактной)
- 79% точность категоризации
- 60 категорий покрывают 95% каналов
- Готовая основа для поиска и рекомендаций

Кстати сверху еще сделали векторизацию на bge-m3 получился бомбический!

Фотка сервера в коментах
601🔥7118👍11💯1