OpenAI зарелизили поиск
Почему у меня такие предложения по поиску?😀
Я по-русски с chatgpt почти не общаюсь, в CS 1.6 не играю, новости особо не читаю🐸 🐸 🐸
https://openai.com/index/introducing-chatgpt-search/
Почему у меня такие предложения по поиску?
Я по-русски с chatgpt почти не общаюсь, в CS 1.6 не играю, новости особо не читаю
https://openai.com/index/introducing-chatgpt-search/
Please open Telegram to view this post
VIEW IN TELEGRAM
😁11
Нейронный Кот
OpenAI зарелизили поиск Почему у меня такие предложения по поиску? 😀 Я по-русски с chatgpt почти не общаюсь, в CS 1.6 не играю, новости особо не читаю 🐸 🐸 🐸 https://openai.com/index/introducing-chatgpt-search/
OpenAI выпустили официальное расширение, которое меняет вашу строку поиска с гугла на чатгпт.
Можно полностью отказаться от поиска гугл!
🔹 Ссылка на расширение
@neural_cat
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥7🌚1
OpenAI релизнули новую фичу, которая ускоряет генерацию — Predicted Outputs
Для задач, где требуется редактирование ответа (например, кодинг), теперь можно передать новый параметр`prediction` в completions API.
Работает примерно так:
1. Мы показываем, какой ответ должен быть
2. Chatgpt одним форвард пассом понимает, где надо исправить ответ (или не одним, если исправлять надо в нескольких местах)
3. Исправляет ответ только там, где надо
Итого, тратится на ~порядок меньше форард пассов.
🔹Gpt-4o по скорости на таких задачах становится быстрее Haiku от антропика
🔹НО вас все равно чарджат за ваш "драфтовый" ответ по цене completion токенов
И Анонс в твиттере
@neural_cat
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥7👍1
OpenAI API лежал сегодня 4 часа
Это напоминание, что желательно настроить fallback на claude/gemini/etc, а не зависеть от одного провайдера
Openrouter, кстати, поддерживает автоматический фолбек — просто указываете список "запасных" моделей и он за вас все зароутит — https://openrouter.ai/docs/model-routing
Это напоминание, что желательно настроить fallback на claude/gemini/etc, а не зависеть от одного провайдера
Openrouter, кстати, поддерживает автоматический фолбек — просто указываете список "запасных" моделей и он за вас все зароутит — https://openrouter.ai/docs/model-routing
👍9
Системные промпты отменяются
Оказывается, openai не добавили какое-то новое поле для следования инструкциям, а просто решили заменить слово
Зачем?😩
Оказывается, openai не добавили какое-то новое поле для следования инструкциям, а просто решили заменить слово
system
на developer
Зачем?
Please open Telegram to view this post
VIEW IN TELEGRAM
💔10😁3
Тоже прогромирую с LLM, но с О1-бомж-версией и руками всегда все файлы копировал и объяснял структуру проекта 😒
Буду пробовать эти тулзы, кажется, они решают мою боль!
Буду пробовать эти тулзы, кажется, они решают мою боль!
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2
Forwarded from Denis Sexy IT 🤖
В последнее время я все больше программирую с LLM, и теперь добавил в связку o1 Pro:
Когда Sonnet 3.6 с первого раза что-то не может починить, я беру ошибку и код который есть, и прошу o1 Pro разобраться – потом тупо копирую ее ответ в Cursor и он уже сам всё чинит/правит
И чем больше я использую O1 Pro для кода, тем больше замечаю, что ей очень важна разметка промпта и структура кода, поэтому я обновил немного свои тулы для LLM-программирования:
🗺️ Folder Map Generator – примитивно работает, вы ей папку, она вам дерево файлов и каталогов; нужно чтобы LLM правильно писала пути к файлам, так как любая модель путается; файлы не покидают вкладку браузера
📄 Text File Merger for LLM – эта штука стала еще умнее: можно руками указать какие типы файлов взять из папки, автоматом расставятся пути и открывающие/закрывающие теги имен файлов (нужно для думающих моделей), все это поможет быстро добавить нужный кусок проекта в LLM-контекст; файлы не покидают вкладку браузера
Но самое полезное, что если вы положите в папку пустой файл
***
В подтверждение моих слов про контекст, вот недавняя статья где команда смогла сильно бустнуть производительность АИ-ассистента для написания кода.
Вот краткая выдержка, общими словами:
1. Сначала, до кода, они дают LLM контекст проекта и просят его понять
2. Группируют похожие файлы по контексту
3. Просят модель прогнозировать, что именно затронет изменение кода
4. Передают ей историю изменений кода
Когда Sonnet 3.6 с первого раза что-то не может починить, я беру ошибку и код который есть, и прошу o1 Pro разобраться – потом тупо копирую ее ответ в Cursor и он уже сам всё чинит/правит
И чем больше я использую O1 Pro для кода, тем больше замечаю, что ей очень важна разметка промпта и структура кода, поэтому я обновил немного свои тулы для LLM-программирования:
🗺️ Folder Map Generator – примитивно работает, вы ей папку, она вам дерево файлов и каталогов; нужно чтобы LLM правильно писала пути к файлам, так как любая модель путается; файлы не покидают вкладку браузера
📄 Text File Merger for LLM – эта штука стала еще умнее: можно руками указать какие типы файлов взять из папки, автоматом расставятся пути и открывающие/закрывающие теги имен файлов (нужно для думающих моделей), все это поможет быстро добавить нужный кусок проекта в LLM-контекст; файлы не покидают вкладку браузера
Но самое полезное, что если вы положите в папку пустой файл
.ignore
, то оба тула ее проигнорируют – то есть лишние папки/файлы можно убрать из контекста***
В подтверждение моих слов про контекст, вот недавняя статья где команда смогла сильно бустнуть производительность АИ-ассистента для написания кода.
Вот краткая выдержка, общими словами:
1. Сначала, до кода, они дают LLM контекст проекта и просят его понять
2. Группируют похожие файлы по контексту
3. Просят модель прогнозировать, что именно затронет изменение кода
4. Передают ей историю изменений кода
Shir-Man
Folder Map Generator - Visual Explorer of Project Structures
Generate ASCII tree structures from your project folders. Perfect for visualizing directory layouts and sharing with LLMs. Process files locally with privacy.
👍8
Проклятые токены 🤯
Замечали/задумывались, что всего один случайный токен может привести выход LLM к неправильному ответу или в случае с маленькими моделями — к бреду?
Условно, на запрос
модель может случайно сгенерить токен "import Flask" вместо "import FastAPI"
И дальше уже от этого проклятого токена никуда не деться — придется продолжать ответ с фласком.
Как бы боролись с таким? На этапе обучения? На этапе инференса? CoT не предлагать😁
Замечали/задумывались, что всего один случайный токен может привести выход LLM к неправильному ответу или в случае с маленькими моделями — к бреду?
Условно, на запрос
Реализуй эндпоинт на FastAPI ...
модель может случайно сгенерить токен "import Flask" вместо "import FastAPI"
И дальше уже от этого проклятого токена никуда не деться — придется продолжать ответ с фласком.
Как бы боролись с таким? На этапе обучения? На этапе инференса? CoT не предлагать
Please open Telegram to view this post
VIEW IN TELEGRAM
🤔4😁2👍1
Нейронный Кот
Проклятые токены 🤯 Замечали/задумывались, что всего один случайный токен может привести выход LLM к неправильному ответу или в случае с маленькими моделями — к бреду? Условно, на запрос Реализуй эндпоинт на FastAPI ... модель может случайно сгенерить токен…
Боремся с проклятыми токенами 😎
Люблю статьи от авторов phi — очень простые с топорными методами, но работают хорошо.
В тех репорте phi-4 показали, что
🔹 Проклятые (и благословенные) токены существуют
🔹 Предложили, как с этим бороться
Для задач, где есть правильный ответ, мы можем найти токены, которые негативно или позитивно влияют на вероятность успешного ответа
Как найти такие токены? — авторы называют их pivotal tokens
Считаем условную вероятность, что ответ будет правильным при заданном префиксе ответа. То есть просто эмпирически считаем, какой процент правильных ответов будет при префиксе `import Flask`
Таким макаром находим все pivotal tokens в нашем трейн сете. И учим модель различать хорошие токены от плохих. Для этого формируем пары
И запускаем DPO на этих парах. Еще раз: мы учим предсказывать только один токен! ⚠️
Если бы мы просто делали SFT или DPO на полных ответах, то учились бы предсказывать эти проклятые токены, которые негативно влияют на вероятность успешного ответа.
В таблице 9 можно посмотреть, как DPO на pivotal tokens (stage 1) накидывает в качестве по сравнению с обычным DPO и SFT
🤨 Меня удивило, что проклятыми токенами могут быть вполне безобидные токены в стиле предсказал "that" вместо "the" (см. скрины в треде)
📖 Статья
@neural_cat
Люблю статьи от авторов phi — очень простые с топорными методами, но работают хорошо.
В тех репорте phi-4 показали, что
🔹 Проклятые (и благословенные) токены существуют
🔹 Предложили, как с этим бороться
Для задач, где есть правильный ответ, мы можем найти токены, которые негативно или позитивно влияют на вероятность успешного ответа
p(success)
Как найти такие токены? — авторы называют их pivotal tokens
Считаем условную вероятность, что ответ будет правильным при заданном префиксе ответа. То есть просто эмпирически считаем, какой процент правильных ответов будет при префиксе `import Flask`
Таким макаром находим все pivotal tokens в нашем трейн сете. И учим модель различать хорошие токены от плохих. Для этого формируем пары
prompt = promt + answer prefix
good response = good token
bad response = bad token
И запускаем DPO на этих парах. Еще раз: мы учим предсказывать только один токен! ⚠️
Если бы мы просто делали SFT или DPO на полных ответах, то учились бы предсказывать эти проклятые токены, которые негативно влияют на вероятность успешного ответа.
В таблице 9 можно посмотреть, как DPO на pivotal tokens (stage 1) накидывает в качестве по сравнению с обычным DPO и SFT
📖 Статья
@neural_cat
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥14👍4❤1
Нейронный Кот
Боремся с проклятыми токенами 😎 Люблю статьи от авторов phi — очень простые с топорными методами, но работают хорошо. В тех репорте phi-4 показали, что 🔹 Проклятые (и благословенные) токены существуют 🔹 Предложили, как с этим бороться Для задач, где есть…
phi-4 released
И вот сегодня наконец-то зарелизили модель в открытый доступ с MIT лицензией
Идем заменять ваши лламы?
https://huggingface.co/microsoft/phi-4
И вот сегодня наконец-то зарелизили модель в открытый доступ с MIT лицензией
Идем заменять ваши лламы?
https://huggingface.co/microsoft/phi-4
huggingface.co
microsoft/phi-4 · Hugging Face
We’re on a journey to advance and democratize artificial intelligence through open source and open science.
🎉4👍2❤1
Multi-Token Prediction
В DeepSeek учили предсказывать ДВА токена наперед
Подробнее почитайте, что такое MTP тут и тут
Отбросим мысль про ускорение генерации на инференсе
Мне интереснее, что предсказание двух токенов улучшает генерализацию модели (см. таблицу)
И это же логично? Мы, люди, не предсказываем только одно слово (токен), когда формируем мысли
Мы пытаемся предсказать сразу несколько основных токенов, которые будут в нашем ответе
Например, на вопрос про трансформер, мы сразу вспоминаеммайкла бэя такие слова как атеншн, эмбединги, kv cache, etc
Так, вот. Почему бы не учить LLM предсказывать сразу две вещи:
То есть в лосс добавить еще одно слагаемое, которое делает multi-label предсказание ВСЕХ следующих токенов для i-го шага. И предсказывать это одним слоем (матрицей d x |V|)
Будет работать?
В DeepSeek учили предсказывать ДВА токена наперед
Подробнее почитайте, что такое MTP тут и тут
Отбросим мысль про ускорение генерации на инференсе
Мне интереснее, что предсказание двух токенов улучшает генерализацию модели (см. таблицу)
И это же логично? Мы, люди, не предсказываем только одно слово (токен), когда формируем мысли
Мы пытаемся предсказать сразу несколько основных токенов, которые будут в нашем ответе
Например, на вопрос про трансформер, мы сразу вспоминаем
Так, вот. Почему бы не учить LLM предсказывать сразу две вещи:
1. next token
2. all next tokens
То есть в лосс добавить еще одно слагаемое, которое делает multi-label предсказание ВСЕХ следующих токенов для i-го шага. И предсказывать это одним слоем (матрицей d x |V|)
Будет работать?
👍11❤4🤔2
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
😁11👎2
Вайб-кодить в формате "реализуй фичу ИКС" — тупо
Так вы даете полный контроль модели (например, через agentic cursor) над реализацией фичи.
Реализация может оказаться неэффективной, небезопасной и в ней потом фиг разберешься
Поэтому:
🤬 Если умеете кодить, то сначала составьте план, что и как где должно быть реализовано. Зафиксируйте все функции/абстракции/компоненты/файлы/API/etc, а потом уже давайте задачу курсору:
😒 Если не умеете, то сначала посоветуйтесь с o3-mini/gemini 2.5 pro/sonnet 3.7/etc — кидайте им вашу кодовую базу, говорите, что хотите в нее добавить и просите такой план по реализации фичи, чтобы все было кайфово, безопасно, эффективно, робастно и тд
В конечном итоге, с этим подходом будете меньше тратить времени на поддержку/разработку фичей/фикс багов🙂
С бездумным вайб-кодингом можно делать только что-то очень базовое (на данный момент)
Так вы даете полный контроль модели (например, через agentic cursor) над реализацией фичи.
Реализация может оказаться неэффективной, небезопасной и в ней потом фиг разберешься
Поэтому:
реализуй фичу ИКС
...
Для этого сделай
1) bla-bla
2) bla-bla
3) bla-bla
В конечном итоге, с этим подходом будете меньше тратить времени на поддержку/разработку фичей/фикс багов
С бездумным вайб-кодингом можно делать только что-то очень базовое (на данный момент)
Please open Telegram to view this post
VIEW IN TELEGRAM
👍16
Урбанистические трюки
Вы, наверное, слышали, что урбанисты делают городскую среду более безопасной и приятной через простые трюки для автомобилистов/пешеходов
В Лондоне мне нравится трюк со светофорами
На зеленом сигнале светофора есть специальные лопасти, которые не дают понять, горит ли зеленый сигнал, если ты смотришь на светофор под углом (то есть, не находишься на зебре)
Соответственно, люди скорее не будут бежать откуда-то издалека под углом через дорогу, ведь они не видят, горит ли зеленый свет
НО! На самом деле пешеходу доступна вся информация, ведь если не горит красный сигнал, значит, горит зеленый🍎 А на красном сигнале как раз нет никаких лопастей! Но люди не могут быстро сделать такой вывод
Такой же трюк с лопастями я встретил и для автомобилистов. Только там лопасти смотрят вниз => значит, издалека не увидишь, горит ли зеленый. Поэтому сначала надо медленно к светофору подъехать, чтобы убедиться, что там 🟢
Короче, крутой трюк, который особо не напрягает, но сильно повышает безопасность.
Как можно было бы сделать, если ты не особо умный? Потратить $$$ и поставить заборы вдоль всей проезжей части
Знаете примеры подобных трюков? Не обязательно в урбанистике
Вы, наверное, слышали, что урбанисты делают городскую среду более безопасной и приятной через простые трюки для автомобилистов/пешеходов
В Лондоне мне нравится трюк со светофорами
На зеленом сигнале светофора есть специальные лопасти, которые не дают понять, горит ли зеленый сигнал, если ты смотришь на светофор под углом (то есть, не находишься на зебре)
Соответственно, люди скорее не будут бежать откуда-то издалека под углом через дорогу, ведь они не видят, горит ли зеленый свет
НО! На самом деле пешеходу доступна вся информация, ведь если не горит красный сигнал, значит, горит зеленый
Такой же трюк с лопастями я встретил и для автомобилистов. Только там лопасти смотрят вниз => значит, издалека не увидишь, горит ли зеленый. Поэтому сначала надо медленно к светофору подъехать, чтобы убедиться, что там 🟢
Короче, крутой трюк, который особо не напрягает, но сильно повышает безопасность.
Как можно было бы сделать, если ты не особо умный? Потратить $$$ и поставить заборы вдоль всей проезжей части
Знаете примеры подобных трюков? Не обязательно в урбанистике
Please open Telegram to view this post
VIEW IN TELEGRAM
👍11🔥6❤4😁1🤔1
Forwarded from shipshigram
This media is not supported in your browser
VIEW IN TELEGRAM
Не могу точно понять, как интропретировать этот факт: Хасбик в полный рост выглядывает из окна офиса Google (этаж Google Research).
Мнения?
Мнения?
😁17❤4