Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
@neural
Please open Telegram to view this post
VIEW IN TELEGRAM
⚙️ Поисковая система Яндекса получила серьезное обновление: в Нейро интегрирована новая мультимодальная VLM
VLM представляют собой сложные системы с многоуровневой архитектурой и многоэтапным процессом обучения. Яндекс, например, использовал для обучения своей модели метод instruct-based pretrain с несколькими миллионами семплов. Эти и другие подробности о технологии VLM рассматриваются ML-разработчиком Яндекса на Хабре.
Внутри сравнительный анализ пайплайнов старой и новой версий Нейро. Если раньше система опиралась на отдельные LLM-модели, то теперь в её основе лежит интегрированный подход с использованием VLM-рефразера и VLM-captioner.
Для оценки качества работы VLM Яндекс использует не только стандартные численные метрики, но и метод Side-by-Side (SbS) с привлечением асессоров, которые оценивают грамотность, полноту ответа и отсутствие ошибок.
▪️ Источник: https://habr.com/ru/companies/yandex/articles/847706/
@neural
VLM представляют собой сложные системы с многоуровневой архитектурой и многоэтапным процессом обучения. Яндекс, например, использовал для обучения своей модели метод instruct-based pretrain с несколькими миллионами семплов. Эти и другие подробности о технологии VLM рассматриваются ML-разработчиком Яндекса на Хабре.
Внутри сравнительный анализ пайплайнов старой и новой версий Нейро. Если раньше система опиралась на отдельные LLM-модели, то теперь в её основе лежит интегрированный подход с использованием VLM-рефразера и VLM-captioner.
Для оценки качества работы VLM Яндекс использует не только стандартные численные метрики, но и метод Side-by-Side (SbS) с привлечением асессоров, которые оценивают грамотность, полноту ответа и отсутствие ошибок.
▪️ Источник: https://habr.com/ru/companies/yandex/articles/847706/
@neural
⚡️napkin — полезная нейросеть, которая поможет создать стильные графики и таблицы из любого текста.
Сервис создает несколько шаблонов на выбор, их элементы можно редактировать. Поддерживает сохранение в
https://app.napkin.ai/signin
Сервис создает несколько шаблонов на выбор, их элементы можно редактировать. Поддерживает сохранение в
PDF, PNG
или SVG. Ну и главное, приложение бесплатное https://app.napkin.ai/signin
Forwarded from Machinelearning
trl-X - метод, который позволяет управлять структурой и внешним видом изображений, создаваемых диффузионными моделями без необходимости дополнительного обучения или использования инструкций.
Ctrl-X предлагает управляемую генерацию, разделяя ее на две основные составляющие: сохранение пространственной структуры и семантически-осведомленный перенос стиля.
Для управления структурой используется прямая инъекция признаков сверточных слоев и карт внимания из входного изображения, который задает структуру.
Для переноса внешнего вида c входного источника применяется метод, основанный на статистике признаков, который учитывает пространственное соответствие между исходным и генерируемым изображениями.
Анализ карт внимания позволяет выявить семантические соответствия между ними и перенести стилистические характеристики с учетом их пространственного расположения.
Метод Ctrl-X не привязан к конкретным моделям и может применяться к любым диффузионным моделям T2I (текст-изображение) и T2V (текст-видео).
Программная реализация Ctrl-X на модели Stable Diffusion XL 1.0 поддерживает запуск с Gradio UI и инференс в CLI.
В обоих типах запуска Ctrl-X (Gradio и CLI) предусмотрена возможность оптимизации потребления VRAM : ключи запуска
cpu_offload
и disable_refiner
.Примерная утилизация VRAM для Gradio с использованием оптимизации выглядит следующим образом:
# Clone the repository
git clone https://github.com/genforce/ctrl-x.git
# Create Conda environment
conda env create -f environment.yaml
conda activate ctrlx
# Run Gradio Demo
python app_ctrlx.py
# or run CLI inference
python run_ctrlx.py \
--structure_image assets/images/horse__point_cloud.jpg \
--appearance_image assets/images/horse.jpg \
--prompt "a photo of a horse standing on grass" \
--structure_prompt "a 3D point cloud of a horse"
@ai_machinelearning_big_data
#AI #ML #Diffusers #CtrlX
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
▪️Github
@neural
Please open Telegram to view this post
VIEW IN TELEGRAM
@neural
Please open Telegram to view this post
VIEW IN TELEGRAM
🚀 YandexGPT 4 — новая мощная нейросеть от Яндекса
В Yandex Cloud уже доступны две версии большой языковой модели — YandexGPT 4 Pro и YandexGPT 4 Lite. По результатам тестов YandexGPT 4 Pro в 70% случаев отвечает лучше своей прошлой версии. А благодаря увеличенному контексту в 32 тыс. токенов может работать с длинными запросами и порядка 60 страницами текста. На Хабре разработчики Яндекса рассказали про все новые фичи нейросети.
🔗 Habr: *клик*
@neural
В Yandex Cloud уже доступны две версии большой языковой модели — YandexGPT 4 Pro и YandexGPT 4 Lite. По результатам тестов YandexGPT 4 Pro в 70% случаев отвечает лучше своей прошлой версии. А благодаря увеличенному контексту в 32 тыс. токенов может работать с длинными запросами и порядка 60 страницами текста. На Хабре разработчики Яндекса рассказали про все новые фичи нейросети.
@neural
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
PocketPal AI - проект Ai-ассистента на базе SLM, которые запускаются локально на iOS и Android без необходимости подключения к Интернету:
Приложения на обеих платформах позволяет выбирать модели, настраивать параметры инференса (системный промпт, температура, шаблоны чата и BOS), следить за показателями производительности в реальном времени и имеют функцию автоматической выгрузки моделей из памяти устройства, когда приложение в фоновом режиме.
Список моделей в приложении (загружаются вручную из меню):
Помимо этих моделей, можно загрузить любую модель в формате GGUF через опцию "Add Local Model" в меню моделей приложения на устройстве.
В планах проекта расширение списка поддерживаемых моделей, улучшение функций пользовательского интерфейса и поддержка большего количества версий Android/
⚠️ Требования для локальная разработки проекта PocketPal:
# Clone repository
git clone https://github.com/a-ghorbani/pocketpal-ai
cd pocketpal-ai
# Install dependencies
yarn install
# Install dependencies iOS only
cd ios
pod install
cd ..
# Run App via iOS Simulator
yarn ios
# Run App via Android Simulator
yarn android
@ai_machinelearning_big_data
#AI #ML #SLM #iOS #Android
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Модель на основе BioMistral настроенная на выполнение инструкций для 7 задач здравоохранения.
MMLM, способная обрабатывать медицинские задачи на уровне изображения и области, частично имитируя работу врача.
MMLM для дерматологии, обученная методом SFT на наборе данных из 2 млн. изображений заболеваний кожи.
Первая в медицинской сфере модель для анализа рентгеновских снимков, электрокардиограмм (ЭКГ) и медицинских заключений.
Метод, основанный на диффузионных вероятностных моделях шумоподавления (DDPM).
Система для решения сложных медицинских задач с использованием специализированных инструментов.
Конвейер, разработанный специалистами Ивановского государственного химико-технологического университета для ускоренной разработки действующих веществ лекарственных средств.
Метод, основанный на диффузионных моделях и графах действий, который позволяет синтезировать реалистичные видео лапароскопических операций.
Методика, которая интегрирует знания о метаболических путях в LLM для повышения точности выявления аномалий.
Алгоритмическая модель для персонализированного управления здоровьем сна с использованием метода CoT.
Метод, который устраняет галлюцинации, связанные с идентификацией несуществующих сущностей и ошибками классификации.
Инструмент для измерения личностных черт LLM на основе анализа их текстовых ответов.
Система обратной связи по медицинским процедурам для студентов-медиков и обучения медперсонала.
Комбинация методов дистилляции знаний и интерпретации моделей для создания комплексных объяснений, адаптированных для медицинских специалистов и специалистов по ML.
Исследование о потенциале замены людей на LLM для оценки ИИ-систем. Спойлер -
Методика "Контрфактические вариации пациента" (CPV) для оценки предвзятости LLM в сложных клинических случаях. Спойлер -
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️Yandex ML Prize: ежегодная премия в области машинного обучения состоялась вчера
Всего в этом году было подано 160 заявок, среди которых Совет премии выбрал 14 лауреатов за наиболее значимые достижения в сфере машинного обучения. Победителями стали исследователи, научные руководители и преподаватели, представляющие ИТМО, КФУ, МФТИ, НИУ ВШЭ, Сколтех, ФИЦ ИУ РАН и AIRI.
🔗 Читать источник *клик*
@neural
Всего в этом году было подано 160 заявок, среди которых Совет премии выбрал 14 лауреатов за наиболее значимые достижения в сфере машинного обучения. Победителями стали исследователи, научные руководители и преподаватели, представляющие ИТМО, КФУ, МФТИ, НИУ ВШЭ, Сколтех, ФИЦ ИУ РАН и AIRI.
@neural
Please open Telegram to view this post
VIEW IN TELEGRAM