Neural Networks | Нейронные сети
11.6K subscribers
748 photos
162 videos
170 files
9.4K links
Все о машинном обучении

По всем вопросам - @notxxx1

№ 4959169263
Download Telegram
🖥 Deep Research.

Этот инструмент способен всего за несколько минут проводить масштабные исследования на любые темы, объединяя множество функций в одном месте: от продвинутого поиска в интернете до аналитических рассуждений.

Вот что еще стоит отметить:

- Анализирует до 100 источников;
- Дает 93,9% точных ответов при проверке простых вопросов (SimpleQA);
- Показывает результативность в 21,1% при прохождении теста «Последний экзамен человечества»;
- Работает быстро – исследование занимает до 3 минут;
- Результаты можно сохранить в формате PDF.

Предоставляется бесплатно с лимитом в 5 запросов в день.

Попробовать

@neural
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
⭐️ Podcastfy — это open-source инструмент, который преобразует текстовый контент в аудио подкасты с использованием синтеза речи.

Он позволяет легко создавать аудиоверсии статей или блогов, упрощая процесс создания подкастов для контент-мейкеров, блогеров или в целях обучения.

🌟 Поддерживает интеграцию с ElevenLabs, OpenAI и Edge TTS, для преобразования текста в речь.

💡 Примеры можно посмотреть здесь.

💨 Поддерживает продвинутые настройки для работы с голосами, стилем речи и другими параметрами. с генеративным контентом.

Установка:
$ pip install podcastfy

Podcastfy — удобный и простой в использовании инструмент для быстрого прототипирования решений по автоматическому созданию аудиоконтента и интеграции в более крупные ML-проекты.

🔐 Лицензия: Apache-2.0

Github
Paper
Colab


@ai_machinelearning_big_data


#podcast #gemini #openai #elevenlabs #genai #notebooklm
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
✔️ Исследование: ChatGPT проходит тест Тьюринга по психотерапии.

Исследование группы университетов США ставит под сомнение границы между человеческим и ИИ в психотерапии. Оказывается, обычному человеку все сложнее отличить ответы, сгенерированные ChatGPT, от профессиональных советов психологов.

В эксперименте с участием 830 человек, ответы ChatGPT не только оказались неотличимы от экспертных, но и были оценены выше по ключевым аспектам психотерапии. Языковой анализ показал, что ChatGPT использует более позитивный тон и предоставляет более развернутые ответы, что способствовало более высоким оценкам в фокусной группе.
journals.plos.org

✔️ Apple и Amazon сталкиваются с трудностями при обновлении голосовых помощников Alexa и Siri.

ИТ-гиганты столкнулись с неожиданными препятствиями в разработке и запуске обновленных версий своих голосовых помощников, Siri и Alexa, на базе генеративного ИИ. Тестирование выявило регулярные проблемы с надежностью и точностью ответов.

По данным Bloomberg, Apple может отложить выпуск улучшенной Siri до мая 2025 года или позже из-за многочисленных программных ошибок и "технических проблем". Аналогичная ситуация наблюдается и в Amazon, где выпуск LLM-версии Alexa также отложен из-за неверных ответов, выявленных в ходе тестирования. Несмотря на планы анонсировать обновление Alexa 26 февраля, публичный доступ будет открыт не ранее 31 марта, то есть через 18 месяцев после первоначального анонса в 2024 году.
bloomberg.com

✔️ Южнокорейские власти приостановили работу приложения DeepSeek.

Южнокорейское правительство запретило загрузку мобильного приложения DeepSeek из-за опасений по поводу безопасности данных. Ограничение, вступившее в силу в субботу, не затронуло пользователей, у которых приложение уже установлено, и доступ к сервису DeepSeek через веб-версию остается открытым.

Корейская комиссия по защите персональной информации (PIPC) заявила, что DeepSeek "частично пренебрегла" своими обязательствами в соответствии с законами Южной Кореи о защите данных. По словам директора отдела расследований PIPC Нам Сока, DeepSeek "недостаточно прозрачна в вопросах передачи данных третьим лицам и потенциально собирает избыточную личную информацию".

Представитель DeepSeek прибыл в Южную Корею для решения возникших проблем. Сроки снятия ограничений на скачивание приложения пока не определены.
nytimes.com

✔️ Ученые обучают ИИ интерпретировать эмоции животных.

Ресерчеры разрабатывают системы ИИ, способные распознавать эмоции животных, чтобы открыть новые возможности для улучшения их благополучия.

Например, система Intellipig, разработанная в Великобритании, анализирует фотографии свиней и предупреждает фермеров о признаках боли, болезни или эмоционального стресса. В Университете Хайфы разрабатывают ИИ, способный распознавать признаки дискомфорта у собак, что может помочь людям лучше понимать своих питомцев.

Система, разработанная в Университете Сан-Паулу, обучилась распознавать признаки боли у лошадей, анализируя фотографии их морд до и после операций, а также до и после приема обезболивающих средств. ИИ смог самостоятельно выявить признаки, указывающие на боль, с точностью 88%, демонстрируя потенциал таких систем для автоматизации мониторинга состояния животных.
science.org

✔️ ИИ теперь помещается в кармане: портативные LLM на USB-накопителях.

Энтузиасты в области ИИ создают портативные версии LLM, которые помещаются на обычный USB-накопитель. Эти модели, хотя и менее мощные, чем их "большие братья", открывают новые возможности для использования ИИ в мобильных и эмбедед-устройствах.

Один из таких проектов, Binh, позволяет запускать LLM на Raspberry Pi Zero W, помещенном в корпус USB-накопителя. Пользователю достаточно создать пустой текстовый файл с именем, и LLM автоматически заполнит его сгенерированным текстом. Хотя скорость работы оставляет желать лучшего, автор проекта считает его первым plug-and-play LLM на USB-носителе.
hackaday.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
MoBA: Mixture of Block Attention for Long-Context LLMs представляет собой революционное решение для обработки длинных контекстов в языковых моделях. Вот что в нём интересно:

• Инновационная архитектура:

- Блочное разреженная внимание: Полный контекст делится на блоки, и каждый токен учится выбирать наиболее релевантные блоки, что позволяет эффективно обрабатывать длинные последовательности.

• Параметрически независимый механизм выбора: Внедрён механизм топ-k без дополнительных параметров, который автоматически переключается между полным и разреженным вниманием, что делает модель гибкой и адаптивной.

• Эффективность и масштабируемость:
MoBA обеспечивает значительное ускорение (например, 6.5x скорость при 1 млн входных токенов) без потери производительности, что особенно важно для задач с длинным контекстом.

• Практическое применение:
Модель уже доказала свою эффективность в продакшене и демонстрирует превосходное качество работы.

Проект MoBA будет полезен всем, работающим над масштабированием LLMs и задачами с длинным контекстом, предоставляя эффективный и гибкий механизм внимания, который можно легко интегрировать в существующие системы.

Github

@machinelearning_interview
🔥 Яндекс выпустил YandexGPT 5 и впервые за долгое время опубликовал модель в открытый доступ.

Компания сделала общедоступной pretrain-версию YandexGPT 5 Lite без финального этапа обучения, этических фильтров и алаймента. Одновременно появилась мощная Pro-версия для бизнеса и разработчиков.

Pro-версия уже работает в чате с Алисой и доступна по API в Yandex Cloud. Для обработки длинных текстов обе модели поддерживают контекст до 32k токенов.

🔗 Habr: *клик*

@neural
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
✔️ Визуализация 2х архитектур нейронных сетей: классический «ванильный» Transformer (слева) и вариант с «Mixture of Experts» (справа).

В обоих случаях есть базовые элементы вроде входных эмбеддингов, механизмов самовнимания (self-attention) и последовательного наложения блоков (N слоёв), но в «Mixture of Experts» внутри каждого блока появляется «router» (маршрутизатор).

Этот маршрутизатор решает, какие «эксперты» (специализированные подмодули) должны обработать текущие данные.

Таким образом, в отличие от обычного Transformer’а, где у нас один набор весов на слой, в «Mixture of Experts» несколько разных «экспертов» конкурируют или дополняют друг друга для более гибкой и точной обработки информации.
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
🍏 Apple представила чип M3 Ultra – самый быстрый процессор, когда-либо созданный для Mac.

Новый M3 Ultra дебютировал в Mac Studio и сочетает в себе 32-ядерный CPU (из которых 24 – высокопроизводительные, а 8 – энергоэффективные) с 80-ядерным GPU и поддержкой до 512 ГБ🔥

Этого хватит для 4-битного Deep Seek R1 и еще останется место.

По заявлениям Apple, этот чип работает на 1,5 раза быстрее, чем M2 Ultra, и на 1,8 раза быстрее, чем M1 Ultra.

Цены на M4 Max начинаются в США с $2000 до уплаты налогов. За эти деньги вы получите 36 ГБ объединённой памяти и SSD на 512 ГБ.

А вот M3 Ultra начинается с $4000. Внутри 96 ГБ объединённой памяти и SSD на 1 ТБ.

@ai_machinelearning_big_data


#apple #Mac #M3Ultra #M4Max
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
📌 PyTorch: новые инструменты для для экономии памяти при обучении моделей.

PyTorch представил усовершенствованные методы Activation Checkpointing (AC), цель которых - снижение потребления памяти при обучении.

Традиционный подход в eager mode сохраняет промежуточные активации для обратного прохода, что зачастую приводит к значительному расходу ресурсов. AC позволяет не сохранять эти тензоры, а вычислять их заново при необходимости, тем самым жертвуя вычислительным временем ради экономии памяти.

Новая техника – Selective Activation Checkpoint (SAC). В отличие от обычного AC, который затрагивает всю выбранную область, SAC дает гранулярный контроль над тем, какие операции следует пересчитывать, а какие – сохранять. Это достигается за счет использования policy_fn, определяющей, нужно ли сохранять результаты конкретной операции. SAC будет полезен для избегания перевычисления ресурсоемких операций, например, матричных умножений.

Для torch.compile стала доступна Memory Budget API. Эта функция автоматически применяет SAC с оптимальной политикой, исходя из заданного пользователем бюджета памяти (от 0 до 1). Бюджет 0 соответствует обычному AC, а 1 – поведению torch.compile по умолчанию.

🔜 Читать подробную статью в блоге Pytorch


@ai_machinelearning_big_data

#AI #ML #Pytorch
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
📌LADDER: как научить LLM решать сложные задачи без учителя.

Tufa Labs опубликовала пейпер фреймворка LADDER, который дает возможность языковым моделям самостоятельно улучшать навыки решения сложных задач.

Технология имитирует человеческое обучение: ИИ разбивает проблемы на простые шаги, создаёт «учебный план» из упрощённых вариантов и постепенно наращивает мастерство решения. Например, модель Llama 3.2 с 3 млрд. параметров, изначально решавшая лишь 1% интегралов студенческого уровня, после обучения по методу LADDER достигла 82% точности.

Самые интересные результаты LADDER показал на тесте MIT Integration Bee — ежегодном соревновании по интегральному исчислению. На нем модель Qwen2.5 (7B), доработанная с помощью LADDER, набрала 73%, обойдя GPT-4o (42%) и большинство студентов, а с применением TTRL — результат вырос до 90%. Это превзошло даже показатели OpenAI o1, хотя последний не использовал числовую проверку решений.

TTRL (Test-Time Reinforcement Learning) — это метод «микрообучения», который позволяет языковым моделям адаптироваться к сложным задачам прямо во время их решения.


В основе LADDER - принцип рекурсивной декомпозиции: модель разбивает непосильную задачу на цепочку постепенно усложняющихся шагов, создавая собственную «учебную программу». Столкнувшись со сложным интегралом, ИИ генерирует его упрощённые версии — снижает степень полинома, убирает дробные коэффициенты или заменяет составные функции базовыми. Каждый такой вариант становится ступенью, ведущей к решению целевой задачи.

Работа фреймворка делится на три этапа:

Первый — генерация «дерева вариантов»: модель создаёт десятки модификаций задачи, ранжируя их по сложности.

Второй — верификация: каждое решение проверяется численными методами (например, сравнение значений интеграла в ключевых точках).

Третий — обучение с подкреплением: система поощряет успешные стратегии, используя баллы за правильные ответы и штрафуя за ошибки.

Дополняющее применение TTRL позволяет проводить «экспресс-тренировки» прямо во время теста: ИИ генерирует варианты конкретной задачи и адаптируется к ней за секунды, не требуя вмешательства человека.


🟡Arxiv

@ai_machinelearning_big_data

#AI #ML #RL #LADDER #Paper
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 EuroBERT: энкодеры нового поколения.

Исследовательская группа под патронажем Centrale Supélec (Университет Париж-Сакле) выпустила в открытый доступ EuroBERT — семейство мультиязычных энкодеров, обученных на 5 трлн. токенов из 15 языков, включая русский.

EuroBERT сочетает инновационную архитектуру с поддержкой контекста до 8192 токенов, что делает это семейство идеальным для анализа документов, поиска информации, классификации, регрессии последовательности, оценки качества, оценки резюме и задач, связанных с программированием, решением математических задачи.

В отличие от предшественников (XLM-RoBERTa и mGTE), EuroBERT объединил GQA, RoPE и среднеквадратичную нормализацию, чтобы достичь беспрецедентной эффективности производительности даже в сложных задачах. Второе немаловажное преимущество EuroBERT - в обучение помимо текстовых данных были включены примеры кода и решения математических задач.

Самая младшая модель EuroBERT с 210 млн. параметров показала рекордные результаты: в тесте MIRACL по многоязычному поиску её точность достигла 95%, а в классификации отзывов (AmazonReviews) — 64,5%. Особенно выделяется умение работать с кодом и математикой — в бенчмарках CodeSearchNet и MathShepherd EuroBERT опережает аналоги на 10–15%.

▶️Состав релиза:

🟢EuroBERT-210М
🟢EuroBERT-610М
🟢EuroBERT-2.1В

⚠️ EuroBERT можно использовать непосредственно с transformers, начиная с версии 4.48.0

⚠️ Для достижения максимальной эффективности, разработчики рекомендуют запускать EuroBERT с Flash Attention 2

▶️ Пример инференса:


from transformers import AutoTokenizer, AutoModelForMaskedLM

model_id = "EuroBERT/EuroBERT-210m"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForMaskedLM.from_pretrained(model_id, trust_remote_code=True)

text = "The capital of France is <|mask|>."
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)

# To get predictions for the mask:
masked_index = inputs["input_ids"][0].tolist().index(tokenizer.mask_token_id)
predicted_token_id = outputs.logits[0, masked_index].argmax(axis=-1)
predicted_token = tokenizer.decode(predicted_token_id)
print("Predicted token:", predicted_token)
# Predicted token: Paris


Лицензирование: Apache 2.0 License.


Статья
Коллекция на HF
Arxiv
GitHub (Скоро)

#AI #ML #Encoder #EuroBERT
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM