Neural Networks | Нейронные сети
11.6K subscribers
803 photos
184 videos
170 files
9.45K links
Все о машинном обучении

По всем вопросам - @notxxx1

№ 4959169263
Download Telegram
​Facebook has released #PyText — new framework on top of #PyTorch.

This framework is build to make it easier for developers to build #NLP models.

Link: https://code.fb.com/ai-research/pytext-open-source-nlp-framework/

🔗 Open-sourcing PyText for faster NLP development
We are open-sourcing PyText, a framework for natural language processing. PyText is built on PyTorch and it makes it faster and easier to build deep learning models for NLP.
​New book by Andrew Ng

Drawn from his experience leading Google Brain, Baidu's AI Group, and Landing AI, this 5-step Playbook provides a roadmap for your company to transform into a great AI company.

Site: https://landing.ai/ai-transformation-playbook
Direct link: https://d6hi0znd7umn4.cloudfront.net/content/uploads/2018/12/AI-Transformation-Playbook.pdf

#book

🔗 AI Transformation Playbook How to lead your company into the AI era - Landing AI
​Трудности создания Open Source Machine Learning библиотеки на примере Apache Ignite ML

🔗 Трудности создания Open Source Machine Learning библиотеки на примере Apache Ignite ML
Доклад для тех кому интересно машинное обучение, написание библиотек для open source, распределенные вычисления и задачи, которые приходится решать в ходе ра...
​How to Improve Deep Learning Model Robustness by Adding Noise

https://machinelearningmastery.com/how-to-improve-deep-learning-model-robustness-by-adding-noise/

🔗 How to Improve Deep Learning Model Robustness by Adding Noise
Adding noise to an underconstrained neural network model with a small training dataset can have a regularizing effect and reduce overfitting. Keras supports the addition of Gaussian noise via a separate layer called the GaussianNoise layer. This layer can be used to add noise to an existing model. In this tutorial, you will discover how …
​Why Deep Learning Works: ICSI UC Berkeley 2018

🔗 Why Deep Learning Works: ICSI UC Berkeley 2018
Recent development in the Theory of Heavy Tailed Self Regularization for Deep Neural Networks. An invited talk at The International Computer Science Institut...
у кого есть книга "прикладное машинное обучение с помощью scikit-learn и tensorflow"? поделитесь, пожалуйста
​MIT AI: Deep Reinforcement Learning (Pieter Abbeel)

🔗 MIT AI: Deep Reinforcement Learning (Pieter Abbeel)
Pieter Abbeel is a professor at UC Berkeley, director of the Berkeley Robot Learning Lab, and is one of the top researchers in the world working on how to ma...