🎥 Intel: Leading the deep learning accelerator solutions
👁 1 раз ⏳ 1926 сек.
👁 1 раз ⏳ 1926 сек.
In this talk, we will discuss how Intel is leading the industry in developing AI accelerators and how new AI hardware like our Intel Nervana Neural Network Processors, paired with open-source software, will allow developers to harness the power of AI for any application.
Subscribe for more videos like this: https://hpe.to/6007Beguh
Visit our website: https://www.hpe.comVk
Intel: Leading the deep learning accelerator solutions
In this talk, we will discuss how Intel is leading the industry in developing AI accelerators and how new AI hardware like our Intel Nervana Neural Network Processors, paired with open-source software, will allow developers to harness the power of AI for…
Open-sourcing PyRobot to accelerate AI robotics research
🔗 Open-sourcing PyRobot to accelerate AI robotics research
Facebook AI is open-sourcing PyRobot, a lightweight, high-level interface that lets AI researchers get up and running with robotics experiments in just hours, with no specialized robotics expertise.
🔗 Open-sourcing PyRobot to accelerate AI robotics research
Facebook AI is open-sourcing PyRobot, a lightweight, high-level interface that lets AI researchers get up and running with robotics experiments in just hours, with no specialized robotics expertise.
Meta
Open-sourcing PyRobot to accelerate AI robotics research
Facebook AI is open-sourcing PyRobot, a lightweight, high-level interface that lets AI researchers get up and running with robotics experiments in just hours, with no specialized robotics expertise.
How to Implement GAN Hacks to Train Stable Generative Adversarial Networks
https://machinelearningmastery.com/how-to-code-generative-adversarial-network-hacks/
🔗 How to Implement GAN Hacks to Train Stable Generative Adversarial Networks
Generative Adversarial Networks, or GANs, are challenging to train. This is because the architecture involves both a generator and a discriminator model that compete in a zero-sum game. It means that improvements to one model come at the cost of a degrading of performance in the other model. The result is a very unstable training …
https://machinelearningmastery.com/how-to-code-generative-adversarial-network-hacks/
🔗 How to Implement GAN Hacks to Train Stable Generative Adversarial Networks
Generative Adversarial Networks, or GANs, are challenging to train. This is because the architecture involves both a generator and a discriminator model that compete in a zero-sum game. It means that improvements to one model come at the cost of a degrading of performance in the other model. The result is a very unstable training …
MachineLearningMastery.com
How to Implement GAN Hacks in Keras to Train Stable Models - MachineLearningMastery.com
Generative Adversarial Networks, or GANs, are challenging to train.
This is because the architecture involves both a generator and a discriminator model that compete in a zero-sum game. It means that improvements to one model come at the cost of a degrading…
This is because the architecture involves both a generator and a discriminator model that compete in a zero-sum game. It means that improvements to one model come at the cost of a degrading…
CNN Application-Detecting Car Exterior Damage(full implementable code)
🔗 CNN Application-Detecting Car Exterior Damage(full implementable code)
Recent advances in deep learning and computation infrastructure(cloud,GPUs etc.) have made computer vision applications leap forward: from…
🔗 CNN Application-Detecting Car Exterior Damage(full implementable code)
Recent advances in deep learning and computation infrastructure(cloud,GPUs etc.) have made computer vision applications leap forward: from…
Towards Data Science
CNN Application-Detecting Car Exterior Damage(full implementable code)
Recent advances in deep learning and computation infrastructure(cloud,GPUs etc.) have made computer vision applications leap forward: from…
🎥 Deep Q Learning w/ DQN - Reinforcement Learning p.5
👁 1 раз ⏳ 1940 сек.
👁 1 раз ⏳ 1940 сек.
Hello and welcome to the first video about Deep Q-Learning and Deep Q Networks, or DQNs. Deep Q Networks are the deep learning/neural network versi...Vk
Deep Q Learning w/ DQN - Reinforcement Learning p.5
Hello and welcome to the first video about Deep Q-Learning and Deep Q Networks, or DQNs. Deep Q Networks are the deep learning/neural network versi...
Здравствуйте, мне очень срочно нужен начинающий дизайнер. Разработка 3 баннера для фото в профиль магазина. Сразу говорю у меня нет бюджета.... понимаю,что многие меня пошлют,но всё ж надеюсь на Человека,который сможет помочь
CNN Heat Maps: Saliency/Backpropagation
🔗 CNN Heat Maps: Saliency/Backpropagation
In this post I will describe the CNN visualization technique commonly referred to as “saliency mapping” or sometimes as “backpropagation”…
🔗 CNN Heat Maps: Saliency/Backpropagation
In this post I will describe the CNN visualization technique commonly referred to as “saliency mapping” or sometimes as “backpropagation”…
Towards Data Science
CNN Heat Maps: Saliency/Backpropagation
In this post I will describe the CNN visualization technique commonly referred to as “saliency mapping” or sometimes as “backpropagation”…
How to Increase the Impact of Your Machine Learning Model
🔗 How to Increase the Impact of Your Machine Learning Model
Hint: Balance your efforts.
🔗 How to Increase the Impact of Your Machine Learning Model
Hint: Balance your efforts.
Towards Data Science
How to Increase the Impact of Your Machine Learning Model
Hint: Balance your efforts.
The Uncanny Valley of Developing Technical Products
🔗 The Uncanny Valley of Developing Technical Products
In B2B software, one of the biggest selling objections is the “Build vs. Buy” argument. The objection is most prevalent at places with…
🔗 The Uncanny Valley of Developing Technical Products
In B2B software, one of the biggest selling objections is the “Build vs. Buy” argument. The objection is most prevalent at places with…
Towards Data Science
The Uncanny Valley of Developing Technical Products
In B2B software, one of the biggest selling objections is the “Build vs. Buy” argument. The objection is most prevalent at places with…
Top 10 Great Sites with Free Data Sets
🔗 Top 10 Great Sites with Free Data Sets
Places to find free, interesting datasets and leverage insights from.
🔗 Top 10 Great Sites with Free Data Sets
Places to find free, interesting datasets and leverage insights from.
Towards Data Science
Top 10 Great Sites with Free Data Sets
Places to find free, interesting datasets and leverage insights from.
Beating State of the Art by Tuning Baselines
🔗 Beating State of the Art by Tuning Baselines
Evaluating ML models by comparing to a baseline is popular, but how do we know if that baseline is as good as it could be?
🔗 Beating State of the Art by Tuning Baselines
Evaluating ML models by comparing to a baseline is popular, but how do we know if that baseline is as good as it could be?
Towards Data Science
Beating State of the Art by Tuning Baselines
Evaluating ML models by comparing to a baseline is popular, but how do we know if that baseline is as good as it could be?
Submodular Batch Selection for Training Deep Neural Networks
https://arxiv.org/abs/1906.08771
🔗 Submodular Batch Selection for Training Deep Neural Networks
Mini-batch gradient descent based methods are the de facto algorithms for training neural network architectures today. We introduce a mini-batch selection strategy based on submodular function maximization. Our novel submodular formulation captures the informativeness of each sample and diversity of the whole subset. We design an efficient, greedy algorithm which can give high-quality solutions to this NP-hard combinatorial optimization problem. Our extensive experiments on standard datasets show that the deep models trained using the proposed batch selection strategy provide better generalization than Stochastic Gradient Descent as well as a popular baseline sampling strategy across different learning rates, batch sizes, and distance metrics.
https://arxiv.org/abs/1906.08771
🔗 Submodular Batch Selection for Training Deep Neural Networks
Mini-batch gradient descent based methods are the de facto algorithms for training neural network architectures today. We introduce a mini-batch selection strategy based on submodular function maximization. Our novel submodular formulation captures the informativeness of each sample and diversity of the whole subset. We design an efficient, greedy algorithm which can give high-quality solutions to this NP-hard combinatorial optimization problem. Our extensive experiments on standard datasets show that the deep models trained using the proposed batch selection strategy provide better generalization than Stochastic Gradient Descent as well as a popular baseline sampling strategy across different learning rates, batch sizes, and distance metrics.
arXiv.org
Submodular Batch Selection for Training Deep Neural Networks
Mini-batch gradient descent based methods are the de facto algorithms for
training neural network architectures today. We introduce a mini-batch
selection strategy based on submodular function...
training neural network architectures today. We introduce a mini-batch
selection strategy based on submodular function...
🎥 Stanford CS230: Deep Learning | Lecture 5 - AI + Healthcare
👁 1 раз ⏳ 5178 сек.
👁 1 раз ⏳ 5178 сек.
Stanford CS230: Deep Learning | Lecture 5 - AI in Healthcare.
Andrew Ng, Adjunct Professor & Kian Katanforoosh, Lecturer - Stanford University htt...Vk
Stanford CS230: Deep Learning | Lecture 5 - AI + Healthcare
Stanford CS230: Deep Learning | Lecture 5 - AI in Healthcare. Andrew Ng, Adjunct Professor & Kian Katanforoosh, Lecturer - Stanford University htt...
Создаем прототип для Sentiment Analysis с помощью Python и TextBlob
Что важно для команды разработчиков, которая только начинает строить систему, базирующуюся на машинном обучении? Архитектура, компоненты, возможности тестирования с помощью интеграционных и юнит тестов, сделать прототип и получить первые результаты. И далее к оценке трудоемкости, планированию разработки и реализации.
В этой статье речь пойдет как раз о прототипе. Который был создан через некоторое время после разговора с Product Manager: а почему бы нам не «пощупать» Machine Learning? В частности, NLP и Sentiment Analysis?
https://habr.com/ru/post/457168/
🔗 Создаем прототип для Sentiment Analysis с помощью Python и TextBlob
Что важно для команды разработчиков, которая только начинает строить систему, базирующуюся на машинном обучении? Архитектура, компоненты, возможности тестирован...
Что важно для команды разработчиков, которая только начинает строить систему, базирующуюся на машинном обучении? Архитектура, компоненты, возможности тестирования с помощью интеграционных и юнит тестов, сделать прототип и получить первые результаты. И далее к оценке трудоемкости, планированию разработки и реализации.
В этой статье речь пойдет как раз о прототипе. Который был создан через некоторое время после разговора с Product Manager: а почему бы нам не «пощупать» Machine Learning? В частности, NLP и Sentiment Analysis?
https://habr.com/ru/post/457168/
🔗 Создаем прототип для Sentiment Analysis с помощью Python и TextBlob
Что важно для команды разработчиков, которая только начинает строить систему, базирующуюся на машинном обучении? Архитектура, компоненты, возможности тестирован...
Хабр
Создаем прототип для Sentiment Analysis с помощью Python и TextBlob
Что важно для команды разработчиков, которая только начинает строить систему, базирующуюся на машинном обучении? Архитектура, компоненты, возможности тестирования с помощью интеграционных и юнит...
Освобождаем руки нескольким аналитикам: API Livy для автоматизации типовых банковских задач
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
Не секрет, что для оценки платежеспособности клиентов банки используют данные из различных источников (кредитное бюро, мобильные операторы и т.д.). Количество внешних партнёров может достигать нескольких десятков, а аналитиков в нашей команде наберётся лишь несколько человек. Возникает задача оптимизации работы небольшой команды и передачи рутинных задач вычислительным системам.
Как данные попадают в банк, и как команда аналитиков следит за этим процессом, разберём в данной статье.
https://habr.com/ru/company/homecredit/blog/457096/
🔗 Освобождаем руки нескольким аналитикам: API Livy для автоматизации типовых банковских задач
Привет, Хабр! Не секрет, что для оценки платежеспособности клиентов банки используют данные из различных источников (кредитное бюро, мобильные операторы и т.д.)...
Наш телеграм канал - tglink.me/ai_machinelearning_big_data
Не секрет, что для оценки платежеспособности клиентов банки используют данные из различных источников (кредитное бюро, мобильные операторы и т.д.). Количество внешних партнёров может достигать нескольких десятков, а аналитиков в нашей команде наберётся лишь несколько человек. Возникает задача оптимизации работы небольшой команды и передачи рутинных задач вычислительным системам.
Как данные попадают в банк, и как команда аналитиков следит за этим процессом, разберём в данной статье.
https://habr.com/ru/company/homecredit/blog/457096/
🔗 Освобождаем руки нескольким аналитикам: API Livy для автоматизации типовых банковских задач
Привет, Хабр! Не секрет, что для оценки платежеспособности клиентов банки используют данные из различных источников (кредитное бюро, мобильные операторы и т.д.)...
Хабр
Освобождаем руки нескольким аналитикам: API Livy для автоматизации типовых банковских задач
Привет, Хабр! Не секрет, что для оценки платежеспособности клиентов банки используют данные из различных источников (кредитное бюро, мобильные операторы и т.д.). Количество внешних партнёров...
🎥 Internet of Things for Everything: Equipment Maintenance Advisor
👁 1 раз ⏳ 1353 сек.
👁 1 раз ⏳ 1353 сек.
IBM Maximo APM Equipment Maintenance Assistant augments your asset maintenance program with machine learning techniques and AI tools. This powerful...Vk
Internet of Things for Everything: Equipment Maintenance Advisor
IBM Maximo APM Equipment Maintenance Assistant augments your asset maintenance program with machine learning techniques and AI tools. This powerful...
🎥 Training & Testing Deep reinforcement learning (DQN) Agent - Reinforcement Learning p.6
👁 1 раз ⏳ 2917 сек.
👁 1 раз ⏳ 2917 сек.
Welcome to part 2 of the deep Q-learning with Deep Q Networks (DQNs) tutorials. In the previous tutorial, we were working on our DQNAgent class, an...Vk
Training & Testing Deep reinforcement learning (DQN) Agent - Reinforcement Learning p.6
Welcome to part 2 of the deep Q-learning with Deep Q Networks (DQNs) tutorials. In the previous tutorial, we were working on our DQNAgent class, an...
Saving £millions for the NHS with Pandas
🔗 Saving £millions for the NHS with Pandas
Showing how the UK National Health Service can use the data analysis tool, Pandas, to save millions of pounds on pharmaceutical costs.
🔗 Saving £millions for the NHS with Pandas
Showing how the UK National Health Service can use the data analysis tool, Pandas, to save millions of pounds on pharmaceutical costs.
Towards Data Science
Saving £millions for the NHS with Pandas
Showing how the UK National Health Service can use the data analysis tool, Pandas, to save millions of pounds on pharmaceutical costs.
Using Artificial Intelligence Methods To Win In Poker
🔗 Using Artificial Intelligence Methods To Win In Poker
Originally written in 2015, this articles reviews the state-of-the-art in poker research at the time & how BCI technology can influence it.
🔗 Using Artificial Intelligence Methods To Win In Poker
Originally written in 2015, this articles reviews the state-of-the-art in poker research at the time & how BCI technology can influence it.
Towards Data Science
Using Artificial Intelligence Methods To Win In Poker
Originally written in 2015, this articles reviews the state-of-the-art in poker research at the time & how BCI technology can influence it.
Understanding Gradient Boosting Machines — using XGBoost and LightGBM parameters
🔗 Understanding Gradient Boosting Machines — using XGBoost and LightGBM parameters
A quick, practical introduction to GBMs so you can stop using them as black-boxes
🔗 Understanding Gradient Boosting Machines — using XGBoost and LightGBM parameters
A quick, practical introduction to GBMs so you can stop using them as black-boxes
Towards Data Science
Understanding Gradient Boosting Machines — using XGBoost and LightGBM parameters
A quick, practical introduction to GBMs so you can stop using them as black-boxes
🎥 Machine Learning Sentiment Analysis And Word Embeddings Python Keras Example
👁 1 раз ⏳ 695 сек.
👁 1 раз ⏳ 695 сек.
In this video, we cover word embeddings and how they relate to machine learning. Specifically, we walk through an example of how to implement sentiment analysis using word embeddings in Python.
CONNECT
Site: https://coryjmaklin.com/
Medium: https://medium.com/@corymaklin
GitHub: https://github.com/corymaklin
Twitter: https://twitter.com/CoryMaklin
Linkedin: https://www.linkedin.com/in/cory-makl...
Facebook: https://www.facebook.com/cory.maklin
Patreon: https://www.patreon.com/corymaklinVk
Machine Learning Sentiment Analysis And Word Embeddings Python Keras Example
In this video, we cover word embeddings and how they relate to machine learning. Specifically, we walk through an example of how to implement sentiment analysis using word embeddings in Python.
CONNECT
Site: https://coryjmaklin.com/
Medium: https://medi…
CONNECT
Site: https://coryjmaklin.com/
Medium: https://medi…