Forwarded from Machinelearning
🚀 Qwen выпустила новую большую модель — Qwen3-235B-A22B-Instruct-2507-FP8!
Qwen только что обновили свою флагманскую модель — Qwen3-235B-A22B, и это просто загляденье.
🧠 Во-первых, это *не* reasoning-модель. Команда Qwen официально заявила, что отказывается от гибридного режима (Instruct + Reasoning в одной модели). Вместо этого они будут выпускать отдельные модели: одна для инструкций, другая для рассуждений.
Сегодня вышла Instruct-версия, reasoning-модель уже в разработке.
⚙️ Архитектура — MoE (Mixture of Experts), активных параметров всего 22B из 235B. То есть модель намного легче, чем кажется — она вполне реалистична для inference, особенно в FP8-режиме.
📊 Метрики впечатляют:
- Обгоняет Kimi K2, у которого, между прочим, *триллион* параметров.
- По большинству бенчмарков работает лучше Claude 4 Opus (non-thinking).
- Особенно мощный прирост — в ARC-AGI: там, где другие модели пасуют, Qwen3 выдаёт серьёзный прогресс.
📜 Модель отлично справляется с:
- Пониманием инструкций
- Логическим выводом
- Обработкой длинных контекстов до 256K токенов
💬 В будущем планируют дистилляцию в младшие версии, так что праздник будет не только для тех, у кого RTX 6000 на столе.
Qwen серьёзно заявляет о себе как об одном из лидеров open-source LLM. Следим.
🟠 HF: https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507 or https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507-FP8
🟠 ModelScope: https://modelscope.cn/models/Qwen/Qwen3-235B-A22B-Instruct-2507 or https://modelscope.cn/models/Qwen/Qwen3-235B-A22B-Instruct-2507-FP8
@ai_machinelearning_big_data
#qwen #ml #ai
Qwen только что обновили свою флагманскую модель — Qwen3-235B-A22B, и это просто загляденье.
🧠 Во-первых, это *не* reasoning-модель. Команда Qwen официально заявила, что отказывается от гибридного режима (Instruct + Reasoning в одной модели). Вместо этого они будут выпускать отдельные модели: одна для инструкций, другая для рассуждений.
Сегодня вышла Instruct-версия, reasoning-модель уже в разработке.
⚙️ Архитектура — MoE (Mixture of Experts), активных параметров всего 22B из 235B. То есть модель намного легче, чем кажется — она вполне реалистична для inference, особенно в FP8-режиме.
📊 Метрики впечатляют:
- Обгоняет Kimi K2, у которого, между прочим, *триллион* параметров.
- По большинству бенчмарков работает лучше Claude 4 Opus (non-thinking).
- Особенно мощный прирост — в ARC-AGI: там, где другие модели пасуют, Qwen3 выдаёт серьёзный прогресс.
📜 Модель отлично справляется с:
- Пониманием инструкций
- Логическим выводом
- Обработкой длинных контекстов до 256K токенов
💬 В будущем планируют дистилляцию в младшие версии, так что праздник будет не только для тех, у кого RTX 6000 на столе.
Qwen серьёзно заявляет о себе как об одном из лидеров open-source LLM. Следим.
@ai_machinelearning_big_data
#qwen #ml #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🎬 Восстание машин началось
Робот устроил целый спектакль: крутился, падал, размахивал руками — как будто в него вселился дух артхауса 🤖🎭
Киберпанковская трагикомедия, где ИИ забыл, что такое гравитация 😄
Робот устроил целый спектакль: крутился, падал, размахивал руками — как будто в него вселился дух артхауса 🤖🎭
Киберпанковская трагикомедия, где ИИ забыл, что такое гравитация 😄
Forwarded from Machinelearning
Что это значит?
OpenAI строит новый дата-центр под *чудовищную* нагрузку:
— 4.5 ГВт вычислений (это больше, чем у некоторых стран)
— стоимость — $30 млрд в год
— «SoftBank не участвует в финансировании»
— переговоры по деньгам сорвались ещё в январе
Oracle теперь главный поставщик чипов для OpenAI.
4,5 гигаватта — этого достаточно, чтобы обеспечить электричеством 3,4 миллиона домов.
OpenAI буквально строит инфраструктуру с потреблением энергии на уровне небольшого города — только ради обучения ИИ.
@ai_machinelearning_big_data
#openai #news #ml #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️ Вышла GenCAD — новая open-source нейросеть для инженеров. Проект превращает фотографии деталей в готовые CAD-модели с параметрическими командами. При этом модель генерирует не просто меш, а полноценный скрипт для CAD-редакторов.
Она основана на диффузионных моделях и трансформерах, что позволяет сохранять редактируемую параметрику. Подходит для быстрого прототипирования и реверс-инжиниринга.
🔗 Ссылка - *клик*
@neural
Она основана на диффузионных моделях и трансформерах, что позволяет сохранять редактируемую параметрику. Подходит для быстрого прототипирования и реверс-инжиниринга.
🔗 Ссылка - *клик*
@neural
This media is not supported in your browser
VIEW IN TELEGRAM
Скриншоты с Google Earth теперь можно превратить в профессиональную съемку с дронов. Реддитор натренировал кастомную модель на базе FLUX Kontext.
Ии создает реалистичные кадры из простых 3D-снимков. На улицах появятся авто и пешеходы, а камера будет плавно пролетать по небу.
Эта модель доступна бесплатно здесь. Требования и инструкция по запуску — по ссылке.
Ии создает реалистичные кадры из простых 3D-снимков. На улицах появятся авто и пешеходы, а камера будет плавно пролетать по небу.
Эта модель доступна бесплатно здесь. Требования и инструкция по запуску — по ссылке.
Forwarded from Machinelearning
ASI-ARCH - экспериментальная демонстрация искусственного сверхинтеллекта для исследований в области ИИ, который способен полностью автономно вести научную работу по поиску новых нейросетевых архитектур.
Система самостоятельно выдвигает гипотезы, реализует их в виде исполняемого кода, обучает и проверяет на практике. Результатом этой работы стали 1773 автономных эксперимента, которые заняли свыше 20 000 GPU-часов и привели к открытию 106 новых SOTA-архитектур с линейным механизмом внимания.
На первом этапе, система работает с небольшими моделями размером около 20 млн параметров, обучая их на 1 млрд токенов. На этом этапе было проведено 1773 эксперимента, которые заняли примерно 10 000 GPU-часов.
Всего на этом этапе было отобрано 1350 перспективных кандидатов — все они превзошли базовую архитектуру DeltaNet как по лоссу, так и по метрикам на бенчмарках.
Второй этап - верификация. Кандидаты первого этапа были масштабированы до 340 млн параметров, чтобы соответствовать конфигурации DeltaNet. После фильтрации архитектур с избыточной сложностью или числом параметров осталось около 400 моделей.
Их обучение на 1 млрд. токенов потребовало ещё 10 000 GPU-часов. В итоге, именно из этой группы были выделены 106 архитектур, достигших SOTA-уровня.
Для финальной валидации исследователи отобрали 5 лучших моделей, обучили их на 15 млрд. токенов и сравнили с Mamba2, Gated DeltaNet и DeltaNet.
ASI-ARCH явно предпочитает работать с проверенными временем компонентами: гейтингом и свёрткой. Но самое главное - распределение компонентов в 106 лучших моделях имеет значительно менее выраженный long-tail distribution по сравнению с остальными 1667 сгенерированными архитектурами.
Это означает, что система добивается успеха не путем хаотичного перебора экзотических идей, а через итеративное улучшение набора проверенных техник. По сути, это очень напоминает методологию работы ученых-людей.
Одна из лучших найденных ИИ-архитектур, PathGateFusionNet, показала средний результат по всем бенчмаркам 48.51. Для сравнения, Mamba2 набрала 47.84, а разработанная человеком Gated DeltaNet — 47.32. Другая генерация, ContentSharpRouter, достигла показателя 48.34.
Если посмотреть на отдельные тесты, то PathGateFusionNet получила на BoolQ 60.58 балла, а Gated DeltaNet - 60.12. AdaptiveEntropyRouter в версии на 340 млн. параметров показала результат на тестах 44.31, что на 2.21 пункта выше, чем у Gated DeltaNet (42.10).
И так практически во всем, улучшения наблюдаются по всему спектру задач.
Для всех 1773 сгенерированных архитектур распределение источников было таким:
Но если посмотреть только на 106 SOTA-итогов, картина меняется. Доля идей, основанных на Analysis, возрастает с 38.2% до 44.8%, а доля Cognition немного снижается до 48.6%.
Таким образом, чтобы достичь ощутимых результатов, ИИ недостаточно просто копировать и комбинировать человеческие наработки. Он должен анализировать собственный опыт, учиться на своих же удачах и провалах, синтезируя более совершенные решения.
@ai_machinelearning_big_data
#AI #ML #Research #ASIARCH
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🚀 MixGRPO от Tencent — теперь в открытом доступе! Новый подход к обучению моделей по человеческим предпочтениям
🔧 Что нового и крутого:
1⃣ Первый фреймворк с гибридным семплированием ODE+SDE — меньше шагов, меньше вычислений
2⃣ До 71% быстрее обучения (вариант MixGRPO‑Flash), при этом точнее и эффективнее, чем DanceGRPO
3⃣ Поддержка ускоренных ODE-решателей — ещё выше скорость без потери качества
4⃣ Работает как с диффузионными, так и с flow-based моделями — требует всего несколько итераций
🔗 Проект: https://tulvgengenr.github.io/MixGRPO-Project-Page/
📦 Код и модели: https://github.com/Tencent-Hunyuan/MixGRPO
📄 Статья: https://arxiv.org/abs/2507.21802
@neural
🔧 Что нового и крутого:
1⃣ Первый фреймворк с гибридным семплированием ODE+SDE — меньше шагов, меньше вычислений
2⃣ До 71% быстрее обучения (вариант MixGRPO‑Flash), при этом точнее и эффективнее, чем DanceGRPO
3⃣ Поддержка ускоренных ODE-решателей — ещё выше скорость без потери качества
4⃣ Работает как с диффузионными, так и с flow-based моделями — требует всего несколько итераций
🔗 Проект: https://tulvgengenr.github.io/MixGRPO-Project-Page/
📦 Код и модели: https://github.com/Tencent-Hunyuan/MixGRPO
📄 Статья: https://arxiv.org/abs/2507.21802
@neural
Forwarded from Анализ данных (Data analysis)
> Anthropic отозвала доступ OpenAI к API своих моделей Claude
> Заявление: “Технические сотрудники OpenAI использовали наши инструменты для программирования перед запуском GPT-5”
> “К сожалению, это прямое нарушение условий использования”
🔥 Кажется, война ИИ-компаний вышла на новый уровень.
@data_analysis_ml
#GPT5 #openai #ANTHROPIC
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM