Neural Networks | Нейронные сети
11.6K subscribers
733 photos
161 videos
170 files
9.4K links
Все о машинном обучении

По всем вопросам - @notxxx1

№ 4959169263
Download Telegram
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
✔️ В ChatGPT для macOS появился режим записи и транскрипции.

OpenAI добавила Record mode для подписчиков ChatGPT Plus, использующих десктопное приложение на macOS. Инструмент позволяет записывать до 120 минут аудио, например, встречи, мозговые штурмы или голосовые заметки. По окончании записи ChatGPT автоматически создает редактируемое резюме на специальном холсте внутри приложения.
OpenAI в сети X

✔️ Google запускает ИИ-функцию, которая сама обзванивает компании от имени пользователя.

Google начала развертывание в США новой функции на базе ИИ, которая позволяет поиску самостоятельно обзванивать местные компании для сбора информации. Теперь при поиске услуг пользователь сможет нажать на специальную кнопку, чтобы ИИ уточнил цены и свободное время. Для этого система задаст несколько уточняющих вопросов, после чего совершит звонок.

Google говорит, что при каждом вызове система представляется как автоматизированный ассистент от имени пользователя. Новая функция доступна для всех пользователей в США, для подписчиков планов AI Pro и AI Ultra предусмотрены увеличенные лимиты этой функции.
techcrunch.com

✔️ Microsoft научила Copilot видеть и анализировать все, что происходит на экране.

Microsoft выпустила для участников программы Windows Insiders обновление Copilot Vision, которое позволяет ИИ-ассистенту сканировать и анализировать весь рабочий стол или окно конкретного приложения. Ранее эта функция могла работать только с двумя приложениями одновременно.

По заявлению Microsoft, новая возможность позволит пользователям получать подсказки и рекомендации в режиме реального времени. Например, можно попросить Copilot помочь с улучшением резюме, дать совет по творческому проекту или даже подсказать, что делать в новой игре.
blogs.windows.com

✔️ Человек обошел ИИ от OpenAI в финале соревнования по программированию AtCoder.

В эвристическом дивизионе финала мирового чемпионата AtCoder победу одержал человек, выступавший под ником FakePsyho. Он сумел опередить систему от OpenAI, которая лидировала большую часть дня и в итоге заняла 2 место среди 12 финалистов. Победа была одержана в последние 80 минут соревнования.

AtCoder World Finals Heuristic Test - это престижный конкурс по решению сложных задач оптимизации (NP-hard). В отличие от традиционных олимпиад, здесь требуется найти не единственно верный, а наилучший приближенный ответ за ограниченное время.
atcoder.jp

✔️ Цукерберг анонсировал строительство ЦОД для ИИ размером с Манхэттен.

Марк Цукерберг рассказал, что в ближайшем будущем его компания построит несколько гигантских дата-центров. По его словам, первый из них, проект «Prometheus», будет запущен в 2026 году, а другой, «Hyperion», в перспективе сможет масштабироваться до мощности в 5 гигаватт.

Цукерберг подчеркнул масштаб планов, заявив, что только один из строящихся кластеров «покроет значительную часть площади Манхэттена». Он также сослался на отчет SemiAnalysis, согласно которому гигант соцсетей станет первой ИИ-лабораторией, которая введет в эксплуатацию суперкластер мощностью более 1 ГВт.
theguardian.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Офис xAI теперь обзавёлся вендинговым аппаратом с ИИ Grok внутри!

Как думаешь, сколько денег Grok на нём поднимет за следующий месяц? 💸
Forwarded from Machinelearning
🚀 Qwen выпустила новую большую модель — Qwen3-235B-A22B-Instruct-2507-FP8!

Qwen только что обновили свою флагманскую модель — Qwen3-235B-A22B, и это просто загляденье.

🧠 Во-первых, это *не* reasoning-модель. Команда Qwen официально заявила, что отказывается от гибридного режима (Instruct + Reasoning в одной модели). Вместо этого они будут выпускать отдельные модели: одна для инструкций, другая для рассуждений.
Сегодня вышла Instruct-версия, reasoning-модель уже в разработке.

⚙️ Архитектура — MoE (Mixture of Experts), активных параметров всего 22B из 235B. То есть модель намного легче, чем кажется — она вполне реалистична для inference, особенно в FP8-режиме.

📊 Метрики впечатляют:
- Обгоняет Kimi K2, у которого, между прочим, *триллион* параметров.
- По большинству бенчмарков работает лучше Claude 4 Opus (non-thinking).
- Особенно мощный прирост — в ARC-AGI: там, где другие модели пасуют, Qwen3 выдаёт серьёзный прогресс.

📜 Модель отлично справляется с:
- Пониманием инструкций
- Логическим выводом
- Обработкой длинных контекстов до 256K токенов

💬 В будущем планируют дистилляцию в младшие версии, так что праздник будет не только для тех, у кого RTX 6000 на столе.

Qwen серьёзно заявляет о себе как об одном из лидеров open-source LLM. Следим.

🟠 HF: https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507 or https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507-FP8
🟠ModelScope: https://modelscope.cn/models/Qwen/Qwen3-235B-A22B-Instruct-2507 or https://modelscope.cn/models/Qwen/Qwen3-235B-A22B-Instruct-2507-FP8

@ai_machinelearning_big_data


#qwen #ml #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🎬 Восстание машин началось

Робот устроил целый спектакль: крутился, падал, размахивал руками — как будто в него вселился дух артхауса 🤖🎭


Киберпанковская трагикомедия, где ИИ забыл, что такое гравитация 😄
Forwarded from Machinelearning
🚨 Oracle официально согласилась поставить OpenAI 2 МИЛЛИОНА AI-чипов

Что это значит?

OpenAI строит новый дата-центр под *чудовищную* нагрузку:
— 4.5 ГВт вычислений (это больше, чем у некоторых стран)
— стоимость — $30 млрд в год 😳

💸 SoftBank? Больше не при делах:
— «SoftBank не участвует в финансировании»
— переговоры по деньгам сорвались ещё в январе

Oracle теперь главный поставщик чипов для OpenAI.

4,5 гигаватта — этого достаточно, чтобы обеспечить электричеством 3,4 миллиона домов.
OpenAI буквально строит инфраструктуру с потреблением энергии на уровне небольшого города — только ради обучения ИИ.

🔜 Новость


@ai_machinelearning_big_data


#openai #news #ml #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️ Вышла GenCAD — новая open-source нейросеть для инженеров. Проект превращает фотографии деталей в готовые CAD-модели с параметрическими командами. При этом модель генерирует не просто меш, а полноценный скрипт для CAD-редакторов.

Она основана на диффузионных моделях и трансформерах, что позволяет сохранять редактируемую параметрику. Подходит для быстрого прототипирования и реверс-инжиниринга.

🔗 Ссылка - *клик*

@neural
This media is not supported in your browser
VIEW IN TELEGRAM
Скриншоты с Google Earth теперь можно превратить в профессиональную съемку с дронов. Реддитор натренировал кастомную модель на базе FLUX Kontext.

Ии создает реалистичные кадры из простых 3D-снимков. На улицах появятся авто и пешеходы, а камера будет плавно пролетать по небу.

Эта модель доступна бесплатно здесь. Требования и инструкция по запуску — по ссылке.
Forwarded from Machinelearning
📌 ИИ, который сам создает ИИ: ASI-ARCH нашел 106 новых SOTA-архитектур.

ASI-ARCH - экспериментальная демонстрация искусственного сверхинтеллекта для исследований в области ИИ, который способен полностью автономно вести научную работу по поиску новых нейросетевых архитектур.

Система самостоятельно выдвигает гипотезы, реализует их в виде исполняемого кода, обучает и проверяет на практике. Результатом этой работы стали 1773 автономных эксперимента, которые заняли свыше 20 000 GPU-часов и привели к открытию 106 новых SOTA-архитектур с линейным механизмом внимания.

🟡Весь процесс разделен на 2 этапа: поиск гипотез и их проверка.

На первом этапе, система работает с небольшими моделями размером около 20 млн параметров, обучая их на 1 млрд токенов. На этом этапе было проведено 1773 эксперимента, которые заняли примерно 10 000 GPU-часов.

Всего на этом этапе было отобрано 1350 перспективных кандидатов — все они превзошли базовую архитектуру DeltaNet как по лоссу, так и по метрикам на бенчмарках.

Второй этап - верификация. Кандидаты первого этапа были масштабированы до 340 млн параметров, чтобы соответствовать конфигурации DeltaNet. После фильтрации архитектур с избыточной сложностью или числом параметров осталось около 400 моделей.

Их обучение на 1 млрд. токенов потребовало ещё 10 000 GPU-часов. В итоге, именно из этой группы были выделены 106 архитектур, достигших SOTA-уровня.

Для финальной валидации исследователи отобрали 5 лучших моделей, обучили их на 15 млрд. токенов и сравнили с Mamba2, Gated DeltaNet и DeltaNet.

🟡 Анализ предпочтений системы показал интересные закономерности.

ASI-ARCH явно предпочитает работать с проверенными временем компонентами: гейтингом и свёрткой. Но самое главное - распределение компонентов в 106 лучших моделях имеет значительно менее выраженный long-tail distribution по сравнению с остальными 1667 сгенерированными архитектурами.

Это означает, что система добивается успеха не путем хаотичного перебора экзотических идей, а через итеративное улучшение набора проверенных техник. По сути, это очень напоминает методологию работы ученых-людей.

🟡Результаты.

Одна из лучших найденных ИИ-архитектур, PathGateFusionNet, показала средний результат по всем бенчмаркам 48.51. Для сравнения, Mamba2 набрала 47.84, а разработанная человеком Gated DeltaNet — 47.32. Другая генерация, ContentSharpRouter, достигла показателя 48.34.

Если посмотреть на отдельные тесты, то PathGateFusionNet получила на BoolQ 60.58 балла, а Gated DeltaNet - 60.12. AdaptiveEntropyRouter в версии на 340 млн. параметров показала результат на тестах 44.31, что на 2.21 пункта выше, чем у Gated DeltaNet (42.10).

И так практически во всем, улучшения наблюдаются по всему спектру задач.

🟡И самое интересное — откуда система черпает идеи? Источников всего 3:

🟢Cognition - знания, извлеченные из научной литературы;
🟢Analysis - выводы, сделанные на основе собственных прошлых экспериментов;
🟢Originality - абсолютно новые идеи.

Для всех 1773 сгенерированных архитектур распределение источников было таким:

🟠51.7% идей приходило из человеческой литературы;
🟠38.2% - из собственного анализа;
🟠10.1% были оригинальными.

Но если посмотреть только на 106 SOTA-итогов, картина меняется. Доля идей, основанных на Analysis, возрастает с 38.2% до 44.8%, а доля Cognition немного снижается до 48.6%.

Таким образом, чтобы достичь ощутимых результатов, ИИ недостаточно просто копировать и комбинировать человеческие наработки. Он должен анализировать собственный опыт, учиться на своих же удачах и провалах, синтезируя более совершенные решения.


🟡Страница проекта
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Research #ASIARCH
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🚀 MixGRPO от Tencent — теперь в открытом доступе! Новый подход к обучению моделей по человеческим предпочтениям

🔧 Что нового и крутого:

1⃣ Первый фреймворк с гибридным семплированием ODE+SDE — меньше шагов, меньше вычислений
2⃣ До 71% быстрее обучения (вариант MixGRPO‑Flash), при этом точнее и эффективнее, чем DanceGRPO
3⃣ Поддержка ускоренных ODE-решателей — ещё выше скорость без потери качества
4⃣ Работает как с диффузионными, так и с flow-based моделями — требует всего несколько итераций

🔗 Проект: https://tulvgengenr.github.io/MixGRPO-Project-Page/
📦 Код и модели: https://github.com/Tencent-Hunyuan/MixGRPO
📄 Статья: https://arxiv.org/abs/2507.21802

@neural
🚨 ANTHROPIC ОТКЛЮЧИЛА OPENAI ОТ ДОСТУПА К CLAUDE

> Anthropic отозвала доступ OpenAI к API своих моделей Claude
> Заявление: “Технические сотрудники OpenAI использовали наши инструменты для программирования перед запуском GPT-5”
> “К сожалению, это прямое нарушение условий использования”

🔥 Кажется, война ИИ-компаний вышла на новый уровень.

@data_analysis_ml

#GPT5 #openai #ANTHROPIC
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM