زیست: بازی شکار اعداد اول!
در قسمت قبل دیدیم که نسبت بین فرکانس ها در سیستم های دینامیکی مستقیما با اعداد اول مرتبط می شود. در سیستم های ارگودیک همیشه این انتظار وجود دارد که سیستم بعد از حرکت در مجموعه ای از حالات به حالت اول خود برگردد. روابط بین مدارهای سامانه ی خورشیدی ما دوره هایی را ساخته است از جمله روز ماه سال و سال کبیسه و غیره. این تناوب ها زمانی رخ می دهند که به اندازه ی ک م م فرکانس ها چرخش ایجاد شده باشد. اگر یک سیستم بخواهد تناوب های طولانی تر ایجاد کند چاره ای ندارد جز اینکه عدد دوره تناوب چرخش بعدی ها نسبت به تمام تناوب های کوتاه ترش اول باشد! به طور مثال اگر سیستم تناوب های ۳، ۴، ۵ داشته باشد تناوب بعدی ۷ خواهد بود چون نسبت به تمام قبلی ها اول است. این دینامیک جالب در جای دیگری هم دیده می شود. برای این منظور یک گذار به زیست شناسی می زنیم!
سیکاداها (cicadas) نوعی حشره هستند که در بسیاری از نقاط جهان زندگی میکنند. در میان آنها، گونهای به نامMagicicada که در آمریکای شمالی یافت میشود، ۹۹٫۵٪ از عمر طولانی خود را بهصورت نابالغ و زیرزمینی در پیله (nymph) میگذراند. اما چیزی که جالبتر است این است که این حشرات، بسته به منطقه یا زیرگونهشان، بهصورت دستهجمعی هر ۱۳ یا ۱۷ سال یکبار از زیر خاک بیرون میآیند. نکتهی قابل توجه این است که هر دو عدد ۱۳ و ۱۷ عدد اول هستند. در نگاه اول ممکن است این موضوع تنها یک تصادف به نظر برسد، اما بسیاری این پدیده را بهعنوان نمونهای از یک راهبرد ضدشکارچی (Antipredator adaptation) مطرح کردهاند. چرا که سیکاداها شکارچیان طبیعی بسیاری دارند، از جمله خزندگان، پرندگان، سنجابها و دیگر پستانداران بزرگتر.
این چرخههای عدد اول خاص باعث میشود که شکارچیان نتوانند با همزمانسازی نسلهای خود با مقسومهای دورهی ظهور سیکاداها، جمعیتشان را بهطور تناوبی افزایش دهند. برای درک بهتر، فرض کنید دورهی ظهور سیکاداها هر ۱۵ سال باشد؛ در این صورت شکارچیان میتوانند بهراحتی چرخههای زادآوری ۳ یا ۵ ساله برای خود تنظیم کنند تا به موقع به طعمههای خود دسترسی داشته باشند و تعدادشان را افزایش دهند.
به این ترتیب، دستههایی از سیکاداها که چرخههای عدد اول دارند، راهبردی را در پیش میگیرند تا تقریباً همیشه در زمانی ظاهر شوند که بخشی از شکارچیانشان هنوز از نظر جنسی نابالغ هستند و بنابراین نمیتوانند از این منبع غذایی لحظهای و بیحد و مرز حداکثر بهره را ببرند.
این دینامیک عجیب شاید یک مورد استثنا بنظر برسد با این حال چنین پدیده ای می تواند مسئول تقریبا تمام پیچیدگی که اطرافمان میبینیم، باشد
دینامیک شکارچی و شکار!
آلفرد لوتکا (Alfred Lotka) ریاضیدان و زیست شناس آمریکایی-لهستانی یکی از اولین افرادی بود که به مطالعه ی دقیق و ریاضی مشاهدات زیست شناسی مشغول شد. یافتن دینامیک مشهور شکار و شکارچی (Predator prey) یکی از بزرگترین دستاورد های زیست شناسی ریاضیاتی (mathematical biology) بود. این مدل یکی از اساسی ترین دینامیک های طبیعت را توضیح می دهد که در آن یک گونه ی شکارچی به دنبال شکار می گردد. به طور مثال می توان به جمعیت روباه ها و خرگوش ها به عنوان یک نمونه از این دینامیک نگاه کرد. به دور از جزییات تکنیکی این مدل یک گردش بی پایان بین جمعیت های شکار و شکارچی را نشان می دهد. به طور که اگر نمودار آن را بر روی فضای فاز بکشیم یک حلقه را ایجاد می کند که همیشه در حال چرخش است (چیزی که در ریاضیات به آن limit cycle) گفته می شود. به این ترتیب که زمانی که جمعیت شکار ها زیاد است جمعیت شکارچی زیاد می شود (غذای بیشتر) تا اینکه این مقدار کم شده تا جایی که شکارچی نیاز دارد جمعیتش را کمتر کند (از بین رفتن) و به این ترتیب فرصت مجدد برای شکار برای افزایش جمعیت پیدا می شود.
در قسمت قبل دیدیم که نسبت بین فرکانس ها در سیستم های دینامیکی مستقیما با اعداد اول مرتبط می شود. در سیستم های ارگودیک همیشه این انتظار وجود دارد که سیستم بعد از حرکت در مجموعه ای از حالات به حالت اول خود برگردد. روابط بین مدارهای سامانه ی خورشیدی ما دوره هایی را ساخته است از جمله روز ماه سال و سال کبیسه و غیره. این تناوب ها زمانی رخ می دهند که به اندازه ی ک م م فرکانس ها چرخش ایجاد شده باشد. اگر یک سیستم بخواهد تناوب های طولانی تر ایجاد کند چاره ای ندارد جز اینکه عدد دوره تناوب چرخش بعدی ها نسبت به تمام تناوب های کوتاه ترش اول باشد! به طور مثال اگر سیستم تناوب های ۳، ۴، ۵ داشته باشد تناوب بعدی ۷ خواهد بود چون نسبت به تمام قبلی ها اول است. این دینامیک جالب در جای دیگری هم دیده می شود. برای این منظور یک گذار به زیست شناسی می زنیم!
سیکاداها (cicadas) نوعی حشره هستند که در بسیاری از نقاط جهان زندگی میکنند. در میان آنها، گونهای به نامMagicicada که در آمریکای شمالی یافت میشود، ۹۹٫۵٪ از عمر طولانی خود را بهصورت نابالغ و زیرزمینی در پیله (nymph) میگذراند. اما چیزی که جالبتر است این است که این حشرات، بسته به منطقه یا زیرگونهشان، بهصورت دستهجمعی هر ۱۳ یا ۱۷ سال یکبار از زیر خاک بیرون میآیند. نکتهی قابل توجه این است که هر دو عدد ۱۳ و ۱۷ عدد اول هستند. در نگاه اول ممکن است این موضوع تنها یک تصادف به نظر برسد، اما بسیاری این پدیده را بهعنوان نمونهای از یک راهبرد ضدشکارچی (Antipredator adaptation) مطرح کردهاند. چرا که سیکاداها شکارچیان طبیعی بسیاری دارند، از جمله خزندگان، پرندگان، سنجابها و دیگر پستانداران بزرگتر.
این چرخههای عدد اول خاص باعث میشود که شکارچیان نتوانند با همزمانسازی نسلهای خود با مقسومهای دورهی ظهور سیکاداها، جمعیتشان را بهطور تناوبی افزایش دهند. برای درک بهتر، فرض کنید دورهی ظهور سیکاداها هر ۱۵ سال باشد؛ در این صورت شکارچیان میتوانند بهراحتی چرخههای زادآوری ۳ یا ۵ ساله برای خود تنظیم کنند تا به موقع به طعمههای خود دسترسی داشته باشند و تعدادشان را افزایش دهند.
به این ترتیب، دستههایی از سیکاداها که چرخههای عدد اول دارند، راهبردی را در پیش میگیرند تا تقریباً همیشه در زمانی ظاهر شوند که بخشی از شکارچیانشان هنوز از نظر جنسی نابالغ هستند و بنابراین نمیتوانند از این منبع غذایی لحظهای و بیحد و مرز حداکثر بهره را ببرند.
این دینامیک عجیب شاید یک مورد استثنا بنظر برسد با این حال چنین پدیده ای می تواند مسئول تقریبا تمام پیچیدگی که اطرافمان میبینیم، باشد
دینامیک شکارچی و شکار!
آلفرد لوتکا (Alfred Lotka) ریاضیدان و زیست شناس آمریکایی-لهستانی یکی از اولین افرادی بود که به مطالعه ی دقیق و ریاضی مشاهدات زیست شناسی مشغول شد. یافتن دینامیک مشهور شکار و شکارچی (Predator prey) یکی از بزرگترین دستاورد های زیست شناسی ریاضیاتی (mathematical biology) بود. این مدل یکی از اساسی ترین دینامیک های طبیعت را توضیح می دهد که در آن یک گونه ی شکارچی به دنبال شکار می گردد. به طور مثال می توان به جمعیت روباه ها و خرگوش ها به عنوان یک نمونه از این دینامیک نگاه کرد. به دور از جزییات تکنیکی این مدل یک گردش بی پایان بین جمعیت های شکار و شکارچی را نشان می دهد. به طور که اگر نمودار آن را بر روی فضای فاز بکشیم یک حلقه را ایجاد می کند که همیشه در حال چرخش است (چیزی که در ریاضیات به آن limit cycle) گفته می شود. به این ترتیب که زمانی که جمعیت شکار ها زیاد است جمعیت شکارچی زیاد می شود (غذای بیشتر) تا اینکه این مقدار کم شده تا جایی که شکارچی نیاز دارد جمعیتش را کمتر کند (از بین رفتن) و به این ترتیب فرصت مجدد برای شکار برای افزایش جمعیت پیدا می شود.
نکته ی مهمی که در مورد این دینامیک وجود دارد عدم تقارن بنیادی آن است. اگر جمعیت شکار زیاد شود جمعیت شکارچی بیشتر می شود اما برعکس اگر جمعیت شکارچی زیاد شود جمعیت شکار کمتر می شود! این عدم تقارن باعث چنین چرخشی می شود. با این حال این دینامیک فقط یک روند تقریبا سینوسی از جمعیت شکارچی و شکار را نشان می دهد و به این ترتیب یک معادله با یک نقطه ی تعادل است. چنین نقاط تعادلی در طبیعت بسیار زیادند. چنین تعادل هایی باعث «مقاومت» (robust) سیستم می شود: اگر شما در یک تعادل طبیعی دخالت کنید به طور مثال تعداد خرگوش ها را زیاد کنید جمعیت روباه ها به نسبت زیاد شده تا آن ها را به تعادل برساند از طرفی اگر جمعیت روباه ها را زیاد کنید شکار کم شده، روباه های بیشتری از گرسنگی مرده و جمعیت به تعادل بر میگردد. با این حال مقداری از «مقاومت» وجود دارد: گاهی اوقات این تغییرات منجر به انقراض یک گونه می تواند بشود!
برای اینکه ارتباط این موضوع را با torus ببینید می توانید حلقه ی توصیف شده را به صورت عمومی تر بین تعدادی زیادی تناوب های شکار و شکارچی ببینید باشد. به طور مشخص تر معادله ی کلی شکار و شکارچی بین p شکار و q شکارچی p+q=n برای n-torus یا تورس n بعدی ایجاد می کند! در اینجا هر شکارچی می تواند چندین شکار داشته باشد و هر شکار می تواند طعمه ی چندین شکارچی باشد! (شبکه ی غذا food web)
زمانی که نسبت فرکانس ها یک عدد گویا است فقط در بخشی از فضا حرکت میکنیم این همان تعادل است. در نظریه بازی ها همیشه به دنبال پیدا کردن چنین راه حلی هستیم: نقطه ای که ثابت است یا سیستم در تعادل قرار می گیرد! با این حال طبیعت فقط تعادل نیست که اگر این گونه بود چیزی نباید تغییر می کرد و «فرگشتی» (evolution) ی وجود نداشت. منشا این عدم تعادل چیست؟ در قسمت بعدی نشان می دهیم چگونه معادله ی شکار و شکارچی سیستم را در نهایت دچار «عدم تعادل» کرده و از طریق این آشوب سیستم را به نقطه ی تعادل بعدی متناظر با عدد های اول بزرگتر هدایت می کند!
برای اینکه ارتباط این موضوع را با torus ببینید می توانید حلقه ی توصیف شده را به صورت عمومی تر بین تعدادی زیادی تناوب های شکار و شکارچی ببینید باشد. به طور مشخص تر معادله ی کلی شکار و شکارچی بین p شکار و q شکارچی p+q=n برای n-torus یا تورس n بعدی ایجاد می کند! در اینجا هر شکارچی می تواند چندین شکار داشته باشد و هر شکار می تواند طعمه ی چندین شکارچی باشد! (شبکه ی غذا food web)
زمانی که نسبت فرکانس ها یک عدد گویا است فقط در بخشی از فضا حرکت میکنیم این همان تعادل است. در نظریه بازی ها همیشه به دنبال پیدا کردن چنین راه حلی هستیم: نقطه ای که ثابت است یا سیستم در تعادل قرار می گیرد! با این حال طبیعت فقط تعادل نیست که اگر این گونه بود چیزی نباید تغییر می کرد و «فرگشتی» (evolution) ی وجود نداشت. منشا این عدم تعادل چیست؟ در قسمت بعدی نشان می دهیم چگونه معادله ی شکار و شکارچی سیستم را در نهایت دچار «عدم تعادل» کرده و از طریق این آشوب سیستم را به نقطه ی تعادل بعدی متناظر با عدد های اول بزرگتر هدایت می کند!
Wikipedia
Food chain
aspects of the ecosystem
معادله شکار و شکارچی در یک بعد حلقه هایی ایجاد می کند. در حالت کلی این حلقه ها با هم کار می کنند و یک n-torus (تورس n بعدی) شکل می دهند. اینجا را ببینید
https://lotka-volterra.vercel.app/
با کد گیتهاب https://github.com/roholazandie/Lotka-Volterra
https://lotka-volterra.vercel.app/
با کد گیتهاب https://github.com/roholazandie/Lotka-Volterra