Mathematics Channel
4.18K subscribers
7.02K photos
244 videos
45 files
6.19K links
Memes, videos, pics, gifs, papers and correlated subjects.


Created on 04/06/17.

Veja também: @matematica345
Download Telegram
Mathematics Channel
Photo
SBM - Sociedade Brasileira de Matemática on Facebook
Timeline Photos

🔊 SAIU!!! 🎉

As inscrições para o Prêmio IMPA-SBM de Jornalismo 2019 estão abertas!

O prêmio é destinado a reportagens que apresentem a Matemática e as Ciências de maneira interessante e original, provoquem reflexão sobre essas áreas do conhecimento e estimulem a sua popularização no Brasil.

Jornalistas têm até 15 de junho para concorrerem.

Mais informações em https://impa.br/premiodejornalismo

#premioimpasbmdejornalismo
#SBM #impa #jornalismo #matematica

https://scontent.xx.fbcdn.net/v/t1.0-9/s720x720/57194573_1242600075906171_4658822142039687168_n.jpg?_nc_cat=108&_nc_ht=scontent.xx&oh=493a816db943d015666f80378e69bebc&oe=5D4096BE

(Feed generated with FetchRSS)
Mathematics Channel
Photo
In number theory, the prime number theorem(PNT) describes the asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they become larger by precisely quantifying the rate at which this occurs. The theorem was proved independently by Jacques Hadamard and Charles Jean de la Vallée Poussinin 1896 using ideas introduced by Bernhard Riemann (in particular, the Riemann zeta function). The first such distribution found is π(N) ~ N/log(N), where π(N) is the prime-counting function and log(N) is the natural logarithm of N. This means that for large enough N, the probability that a random integer not greater than N is prime is very close to 1 / log(N). Consequently, a random integer with at most 2n digits (for large enough n) is about half as likely to be prime as a random integer with at most n digits. For example, among the positive integers of at most 1000 digits, about one in 2300 is prime (log(101000) ≈ 2302.6), whereas among positive integers of at most 2000 digits, about one in 4600 is prime (log(102000) ≈ 4605.2). In other words, the average gap between consecutive prime numbers among the first N integers is roughly log(N).

Hoffman, Paul (1998). The Man Who Loved Only Numbers. New York: Hyperion Books, p. 227.