Artificial Intelligence
46.9K subscribers
466 photos
2 videos
123 files
390 links
๐Ÿ”ฐ Machine Learning & Artificial Intelligence Free Resources

๐Ÿ”ฐ Learn Data Science, Deep Learning, Python with Tensorflow, Keras & many more

For Promotions: @love_data
Download Telegram
๐Ÿš€ Key Skills for Aspiring Tech Specialists

๐Ÿ“Š Data Analyst:
- Proficiency in SQL for database querying
- Advanced Excel for data manipulation
- Programming with Python or R for data analysis
- Statistical analysis to understand data trends
- Data visualization tools like Tableau or PowerBI
- Data preprocessing to clean and structure data
- Exploratory data analysis techniques

๐Ÿง  Data Scientist:
- Strong knowledge of Python and R for statistical analysis
- Machine learning for predictive modeling
- Deep understanding of mathematics and statistics
- Data wrangling to prepare data for analysis
- Big data platforms like Hadoop or Spark
- Data visualization and communication skills
- Experience with A/B testing frameworks

๐Ÿ— Data Engineer:
- Expertise in SQL and NoSQL databases
- Experience with data warehousing solutions
- ETL (Extract, Transform, Load) process knowledge
- Familiarity with big data tools (e.g., Apache Spark)
- Proficient in Python, Java, or Scala
- Knowledge of cloud services like AWS, GCP, or Azure
- Understanding of data pipeline and workflow management tools

๐Ÿค– Machine Learning Engineer:
- Proficiency in Python and libraries like scikit-learn, TensorFlow
- Solid understanding of machine learning algorithms
- Experience with neural networks and deep learning frameworks
- Ability to implement models and fine-tune their parameters
- Knowledge of software engineering best practices
- Data modeling and evaluation strategies
- Strong mathematical skills, particularly in linear algebra and calculus

๐Ÿง  Deep Learning Engineer:
- Expertise in deep learning frameworks like TensorFlow or PyTorch
- Understanding of Convolutional and Recurrent Neural Networks
- Experience with GPU computing and parallel processing
- Familiarity with computer vision and natural language processing
- Ability to handle large datasets and train complex models
- Research mindset to keep up with the latest developments in deep learning

๐Ÿคฏ AI Engineer:
- Solid foundation in algorithms, logic, and mathematics
- Proficiency in programming languages like Python or C++
- Experience with AI technologies including ML, neural networks, and cognitive computing
- Understanding of AI model deployment and scaling
- Knowledge of AI ethics and responsible AI practices
- Strong problem-solving and analytical skills

๐Ÿ”Š NLP Engineer:
- Background in linguistics and language models
- Proficiency with NLP libraries (e.g., NLTK, spaCy)
- Experience with text preprocessing and tokenization
- Understanding of sentiment analysis, text classification, and named entity recognition
- Familiarity with transformer models like BERT and GPT
- Ability to work with large text datasets and sequential data

๐ŸŒŸ Embrace the world of data and AI, and become the architect of tomorrow's technology!
๐Ÿ‘2๐Ÿ”ฅ1
๐Ÿค— HuggingFace is offering 9 AI courses for FREE!

These 9 courses covers LLMs, Agents, Deep RL, Audio and more

1๏ธโƒฃ LLM Course:
https://huggingface.co/learn/llm-course/chapter1/1

2๏ธโƒฃ Agents Course:
https://huggingface.co/learn/agents-course/unit0/introduction

3๏ธโƒฃ Deep Reinforcement Learning Course:
https://huggingface.co/learn/deep-rl-course/unit0/introduction

4๏ธโƒฃ Open-Source AI Cookbook:
https://huggingface.co/learn/cookbook/index

5๏ธโƒฃ Machine Learning for Games Course
https://huggingface.co/learn/ml-games-course/unit0/introduction

6๏ธโƒฃ Hugging Face Audio course:
https://huggingface.co/learn/audio-course/chapter0/introduction

7๏ธโƒฃ Vision Course:
https://huggingface.co/learn/computer-vision-course/unit0/welcome/welcome

8๏ธโƒฃ Machine Learning for 3D Course:
https://huggingface.co/learn/ml-for-3d-course/unit0/introduction

9๏ธโƒฃ Hugging Face Diffusion Models Course:
https://huggingface.co/learn/diffusion-course/unit0/1
โค2๐Ÿ‘2
MACHINE LEARNING
โค5
Tools & Languages in AI & Machine Learning

Want to build the next ChatGPT or a self-driving car algorithm? You need to master the right tools. Today, weโ€™ll break down the tech stack that powers AI innovation.

1. Python โ€“ The Heartbeat of AI

Python is the most widely used programming language in AI. Itโ€™s simple, versatile, and backed by thousands of libraries.
Why it matters: Readable syntax, massive community, and endless ML/AI resources.


2. NumPy & Pandas โ€“ Data Handling Pros

Before building models, you clean and understand data. These libraries make it easy.

NumPy: Fast matrix computations

Pandas: Smart data manipulation and analysis


3. Scikit-learn โ€“ For Traditional ML

Want to build a model to predict house prices or classify emails as spam? Scikit-learn is perfect for regression, classification, clustering, and more.


4. TensorFlow & PyTorch โ€“ Deep Learning Giants

These are the two leading frameworks used for building neural networks, CNNs, RNNs, LLMs, and more.

TensorFlow: Backed by Google, highly scalable

PyTorch: Preferred in research for its flexibility and Pythonic style


5. Keras โ€“ The Friendly Deep Learning API

Built on top of TensorFlow, it allows quick prototyping of deep learning models with minimal code.


6. OpenCV โ€“ For Computer Vision

Want to build face recognition or object detection apps? OpenCV is your go-to for processing images and video.


7. NLTK & spaCy โ€“ NLP Toolkits

These tools help machines understand human language. Youโ€™ll use them to build chatbots, summarize text, or analyze sentiment.


8. Jupyter Notebook โ€“ Your AI Playground

Interactive notebooks where you can write code, visualize data, and explain logic in one place. Great for experimentation and demos.


9. Google Colab โ€“ Free GPU-Powered Coding

Run your AI code with GPUs for free in the cloud โ€” ideal for training ML models without any setup.


10. Hugging Face โ€“ Pre-trained AI Models

Use models like BERT, GPT, and more with just a few lines of code. No need to train everything from scratch!


To build smart AI solutions, you donโ€™t need 100 tools โ€” just the right ones. Start with Python, explore scikit-learn, then dive into TensorFlow or PyTorch based on your goal.

Artificial intelligence learning series: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
โค3๐Ÿ‘3
Roadmap to become NLP Expert in 2025 โœ…
โค4๐Ÿ‘1
โŒจ๏ธ Learn About Python List Methods
โค7
High-Income Skills to Learn: ๐Ÿ’ฒ๐Ÿ“ˆ

1. Artificial intelligence
2. Cloud computing
3. Data science
4. Machine learning
5. Blockchain
6. Data analytics
7. Data engineering
8. Applications engineering
9. Systems engineering
10. Software development
โค9๐Ÿ‘2
Importance of AI in Data Analytics

AI is transforming the way data is analyzed and insights are generated. Here's how AI adds value in data analytics:

1. Automated Data Cleaning

AI helps in detecting anomalies, missing values, and outliers automatically, improving data quality and saving analysts hours of manual work.

2. Faster & Smarter Decision Making

AI models can process massive datasets in seconds and suggest actionable insights, enabling real-time decision-making.

3. Predictive Analytics

AI enables forecasting future trends and behaviors using machine learning models (e.g., sales predictions, churn forecasting).

4. Natural Language Processing (NLP)

AI can analyze unstructured data like reviews, feedback, or comments using sentiment analysis, keyword extraction, and topic modeling.

5. Pattern Recognition

AI uncovers hidden patterns, correlations, and clusters in data that traditional analysis may miss.

6. Personalization & Recommendation

AI algorithms power recommendation systems (like on Netflix, Amazon) that personalize user experiences based on behavioral data.

7. Data Visualization Enhancement

AI auto-generates dashboards, chooses best chart types, and highlights key anomalies or insights without manual intervention.

8. Fraud Detection & Risk Analysis

AI models detect fraud and mitigate risks in real-time using anomaly detection and classification techniques.

9. Chatbots & Virtual Analysts

AI-powered tools like ChatGPT allow users to interact with data using natural language, removing the need for technical skills.

10. Operational Efficiency

AI automates repetitive tasks like report generation, data transformation, and alertsโ€”freeing analysts to focus on strategy.

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)

#dataanalytics
๐Ÿ‘5โค1
OpenAI Guide & Prompt Engineering Resources
๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029VbAbfqcLtOj7Zen5tt3o
๐Ÿ‘2โค1
10 New & Trending AI Concepts You Should Know in 2025

โœ… Retrieval-Augmented Generation (RAG) โ€“ Combines search with generative AI for smarter answers
โœ… Multi-Modal Models โ€“ AI that understands text, image, audio, and video (like GPT-4V, Gemini)
โœ… Agents & AutoGPT โ€“ AI that can plan, execute, and make decisions with minimal input
โœ… Synthetic Data Generation โ€“ Creating fake yet realistic data to train AI models
โœ… Federated Learning โ€“ Train models without moving your data (privacy-first AI)
โœ… Prompt Engineering โ€“ Crafting prompts to get the best out of LLMs
โœ… Fine-Tuning & LoRA โ€“ Customize big models for specific tasks with minimal resources
โœ… AI Safety & Alignment โ€“ Making sure AI systems behave ethically and predictably
โœ… TinyML โ€“ Running ML models on edge devices with very low power (IoT focus)
โœ… Open-Source LLMs โ€“ Rise of models like Mistral, LLaMA, Mixtral challenging closed-source giants

Free AI Resources: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘7โค1
10 Machine Learning Concepts You Must Know

1. Supervised vs Unsupervised Learning

Supervised Learning involves training a model on labeled data (input-output pairs). Examples: Linear Regression, Classification.

Unsupervised Learning deals with unlabeled data. The model tries to find hidden patterns or groupings. Examples: Clustering (K-Means), Dimensionality Reduction (PCA).


2. Bias-Variance Tradeoff

Bias is the error due to overly simplistic assumptions in the learning algorithm.

Variance is the error due to excessive sensitivity to small fluctuations in the training data.

Goal: Minimize both for optimal model performance. High bias โ†’ underfitting; High variance โ†’ overfitting.


3. Feature Engineering

The process of selecting, transforming, and creating variables (features) to improve model performance.

Examples: Normalization, encoding categorical variables, creating interaction terms, handling missing data.


4. Train-Test Split & Cross-Validation

Train-Test Split divides the dataset into training and testing subsets to evaluate model generalization.

Cross-Validation (e.g., k-fold) provides a more reliable evaluation by splitting data into k subsets and training/testing on each.


5. Confusion Matrix

A performance evaluation tool for classification models showing TP, TN, FP, FN.

From it, we derive:

Accuracy = (TP + TN) / Total

Precision = TP / (TP + FP)

Recall = TP / (TP + FN)

F1 Score = 2 * (Precision * Recall) / (Precision + Recall)



6. Gradient Descent

An optimization algorithm used to minimize the cost/loss function by iteratively updating model parameters in the direction of the negative gradient.

Variants: Batch GD, Stochastic GD (SGD), Mini-batch GD.


7. Regularization (L1/L2)

Techniques to prevent overfitting by adding a penalty term to the loss function.

L1 (Lasso): Adds absolute value of coefficients, can shrink some to zero (feature selection).

L2 (Ridge): Adds square of coefficients, tends to shrink but not eliminate coefficients.


8. Decision Trees & Random Forests

Decision Tree: A tree-structured model that splits data based on features. Easy to interpret.

Random Forest: An ensemble of decision trees; reduces overfitting and improves accuracy.


9. Support Vector Machines (SVM)

A supervised learning algorithm used for classification. It finds the optimal hyperplane that separates classes.

Uses kernels (linear, polynomial, RBF) to handle non-linearly separable data.


10. Neural Networks

Inspired by the human brain, these consist of layers of interconnected neurons.

Deep Neural Networks (DNNs) can model complex patterns.

The backbone of deep learning applications like image recognition, NLP, etc.

Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค3๐Ÿ‘2
Importance of AI in Data Analytics

AI is transforming the way data is analyzed and insights are generated. Here's how AI adds value in data analytics:

1. Automated Data Cleaning

AI helps in detecting anomalies, missing values, and outliers automatically, improving data quality and saving analysts hours of manual work.

2. Faster & Smarter Decision Making

AI models can process massive datasets in seconds and suggest actionable insights, enabling real-time decision-making.

3. Predictive Analytics

AI enables forecasting future trends and behaviors using machine learning models (e.g., sales predictions, churn forecasting).

4. Natural Language Processing (NLP)

AI can analyze unstructured data like reviews, feedback, or comments using sentiment analysis, keyword extraction, and topic modeling.

5. Pattern Recognition

AI uncovers hidden patterns, correlations, and clusters in data that traditional analysis may miss.

6. Personalization & Recommendation

AI algorithms power recommendation systems (like on Netflix, Amazon) that personalize user experiences based on behavioral data.

7. Data Visualization Enhancement

AI auto-generates dashboards, chooses best chart types, and highlights key anomalies or insights without manual intervention.

8. Fraud Detection & Risk Analysis

AI models detect fraud and mitigate risks in real-time using anomaly detection and classification techniques.

9. Chatbots & Virtual Analysts

AI-powered tools like ChatGPT allow users to interact with data using natural language, removing the need for technical skills.

10. Operational Efficiency

AI automates repetitive tasks like report generation, data transformation, and alertsโ€”freeing analysts to focus on strategy.

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)

#dataanalytics
๐Ÿ‘2โค1
List of AI Project Ideas ๐Ÿ‘จ๐Ÿปโ€๐Ÿ’ป๐Ÿค– -

Beginner Projects

๐Ÿ”น Sentiment Analyzer
๐Ÿ”น Image Classifier
๐Ÿ”น Spam Detection System
๐Ÿ”น Face Detection
๐Ÿ”น Chatbot (Rule-based)
๐Ÿ”น Movie Recommendation System
๐Ÿ”น Handwritten Digit Recognition
๐Ÿ”น Speech-to-Text Converter
๐Ÿ”น AI-Powered Calculator
๐Ÿ”น AI Hangman Game

Intermediate Projects

๐Ÿ”ธ AI Virtual Assistant
๐Ÿ”ธ Fake News Detector
๐Ÿ”ธ Music Genre Classification
๐Ÿ”ธ AI Resume Screener
๐Ÿ”ธ Style Transfer App
๐Ÿ”ธ Real-Time Object Detection
๐Ÿ”ธ Chatbot with Memory
๐Ÿ”ธ Autocorrect Tool
๐Ÿ”ธ Face Recognition Attendance System
๐Ÿ”ธ AI Sudoku Solver

Advanced Projects

๐Ÿ”บ AI Stock Predictor
๐Ÿ”บ AI Writer (GPT-based)
๐Ÿ”บ AI-powered Resume Builder
๐Ÿ”บ Deepfake Generator
๐Ÿ”บ AI Lawyer Assistant
๐Ÿ”บ AI-Powered Medical Diagnosis
๐Ÿ”บ AI-based Game Bot
๐Ÿ”บ Custom Voice Cloning
๐Ÿ”บ Multi-modal AI App
๐Ÿ”บ AI Research Paper Summarizer

Join for more: https://t.iss.one/machinelearning_deeplearning
๐Ÿ‘1๐Ÿ”ฅ1
Tools & Tech Every Developer Should Know โš’๏ธ๐Ÿ‘จ๐Ÿปโ€๐Ÿ’ป

โฏ VS Code โžŸ Lightweight, Powerful Code Editor
โฏ Postman โžŸ API Testing, Debugging
โฏ Docker โžŸ App Containerization
โฏ Kubernetes โžŸ Scaling & Orchestrating Containers
โฏ Git โžŸ Version Control, Team Collaboration
โฏ GitHub/GitLab โžŸ Hosting Code Repos, CI/CD
โฏ Figma โžŸ UI/UX Design, Prototyping
โฏ Jira โžŸ Agile Project Management
โฏ Slack/Discord โžŸ Team Communication
โฏ Notion โžŸ Docs, Notes, Knowledge Base
โฏ Trello โžŸ Task Management
โฏ Zsh + Oh My Zsh โžŸ Advanced Terminal Experience
โฏ Linux Terminal โžŸ DevOps, Shell Scripting
โฏ Homebrew (macOS) โžŸ Package Manager
โฏ Anaconda โžŸ Python & Data Science Environments
โฏ Pandas โžŸ Data Manipulation in Python
โฏ NumPy โžŸ Numerical Computation
โฏ Jupyter Notebooks โžŸ Interactive Python Coding
โฏ Chrome DevTools โžŸ Web Debugging
โฏ Firebase โžŸ Backend as a Service
โฏ Heroku โžŸ Easy App Deployment
โฏ Netlify โžŸ Deploy Frontend Sites
โฏ Vercel โžŸ Full-Stack Deployment for Next.js
โฏ Nginx โžŸ Web Server, Load Balancer
โฏ MongoDB โžŸ NoSQL Database
โฏ PostgreSQL โžŸ Advanced Relational Database
โฏ Redis โžŸ Caching & Fast Storage
โฏ Elasticsearch โžŸ Search & Analytics Engine
โฏ Sentry โžŸ Error Monitoring
โฏ Jenkins โžŸ Automate CI/CD Pipelines
โฏ AWS/GCP/Azure โžŸ Cloud Services & Deployment
โฏ Swagger โžŸ API Documentation
โฏ SASS/SCSS โžŸ CSS Preprocessors
โฏ Tailwind CSS โžŸ Utility-First CSS Framework

React โค๏ธ if you found this helpful

Coding Jobs: https://whatsapp.com/channel/0029VatL9a22kNFtPtLApJ2L
โค8๐Ÿ‘4
I can't believe people still spend hours on problem-solving when there is AI.

(And no. I'm not talking about basic problem solving)

Problem solving becomes efficient when humans and AI work together.

โœ… Write a prompt
โœ… Get a solution from ChatGPT
โœ… Follow up and keep brainstorming till you get the best solution

Problem-solving techniques on which you can collaborate with ChatGPT:

โœ… Decision Matrix: Compare options based on weighted criteria.
โœ… Force Field Analysis: Analyze forces for and against a change.
โœ… SWOT Analysis: Evaluate strengths, weaknesses, opportunities, and threats.
โœ… First Principles Thinking: Break down complex problems to fundamental truths.
โœ… MECE Principle: Organize information into mutually exclusive, collectively exhaustive categories.

And more covered in the infographic below. ๐Ÿ‘‡
โค2๐Ÿ‘2
โค2๐Ÿ”ฅ2
Planning for Data Science or Data Engineering Interview.

Focus on SQL & Python first. Here are some important questions which you should know.

๐ˆ๐ฆ๐ฉ๐จ๐ซ๐ญ๐š๐ง๐ญ ๐’๐๐‹ ๐ช๐ฎ๐ž๐ฌ๐ญ๐ข๐จ๐ง๐ฌ

1- Find out nth Order/Salary from the tables.
2- Find the no of output records in each join from given Table 1 & Table 2
3- YOY,MOM Growth related questions.
4- Find out Employee ,Manager Hierarchy (Self join related question) or
Employees who are earning more than managers.
5- RANK,DENSERANK related questions
6- Some row level scanning medium to complex questions using CTE or recursive CTE, like (Missing no /Missing Item from the list etc.)
7- No of matches played by every team or Source to Destination flight combination using CROSS JOIN.
8-Use window functions to perform advanced analytical tasks, such as calculating moving averages or detecting outliers.
9- Implement logic to handle hierarchical data, such as finding all descendants of a given node in a tree structure.
10-Identify and remove duplicate records from a table.

๐ˆ๐ฆ๐ฉ๐จ๐ซ๐ญ๐š๐ง๐ญ ๐๐ฒ๐ญ๐ก๐จ๐ง ๐ช๐ฎ๐ž๐ฌ๐ญ๐ข๐จ๐ง๐ฌ

1- Reversing a String using an Extended Slicing techniques.
2- Count Vowels from Given words .
3- Find the highest occurrences of each word from string and sort them in order.
4- Remove Duplicates from List.
5-Sort a List without using Sort keyword.
6-Find the pair of numbers in this list whose sum is n no.
7-Find the max and min no in the list without using inbuilt functions.
8-Calculate the Intersection of Two Lists without using Built-in Functions
9-Write Python code to make API requests to a public API (e.g., weather API) and process the JSON response.
10-Implement a function to fetch data from a database table, perform data manipulation, and update the database.

Join for more: https://t.iss.one/datasciencefun

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค4๐Ÿ‘2
Want to practice for your next interview?

Then use this prompt and ask Chat GPT to act as an interviewer ๐Ÿ˜„๐Ÿ‘‡ (Tap to copy)

I want you to act as an interviewer. I will be the
candidate and you will ask me the
interview questions for the position position. I
want you to only reply as the interviewer.
Do not write all the conservation at once. I
want you to only do the interview with me.
Ask me the questions and wait for my answers.
Do not write explanations. Ask me the
questions one by one like an interviewer does
and wait for my answers. My first
sentence is "Hi"

Now see how it goes. All the best for your preparation
Like this post if you need more content like this๐Ÿ‘โค๏ธ
โค4
End to End ML Project
โค3๐Ÿ‘1
Machine Learning Roadmap
โค7