Artificial Intelligence
46.9K subscribers
466 photos
2 videos
123 files
390 links
๐Ÿ”ฐ Machine Learning & Artificial Intelligence Free Resources

๐Ÿ”ฐ Learn Data Science, Deep Learning, Python with Tensorflow, Keras & many more

For Promotions: @love_data
Download Telegram
Types of AI
โค5๐Ÿ‘2
๐Ÿค– AI/ML Roadmap

1๏ธโƒฃ Math & Stats ๐Ÿงฎ๐Ÿ”ข: Learn Linear Algebra, Probability, and Calculus.
2๏ธโƒฃ Programming ๐Ÿ๐Ÿ’ป: Master Python, NumPy, Pandas, and Matplotlib.
3๏ธโƒฃ Machine Learning ๐Ÿ“ˆ๐Ÿค–: Study Supervised & Unsupervised Learning, and Model Evaluation.
4๏ธโƒฃ Deep Learning ๐Ÿ”ฅ๐Ÿง : Understand Neural Networks, CNNs, RNNs, and Transformers.
5๏ธโƒฃ Specializations ๐ŸŽ“๐Ÿ”ฌ: Choose from NLP, Computer Vision, or Reinforcement Learning.
6๏ธโƒฃ Big Data & Cloud โ˜๏ธ๐Ÿ“ก: Work with SQL, NoSQL, AWS, and GCP.
7๏ธโƒฃ MLOps & Deployment ๐Ÿš€๐Ÿ› ๏ธ: Learn Flask, Docker, and Kubernetes.
8๏ธโƒฃ Ethics & Safety โš–๏ธ๐Ÿ›ก๏ธ: Understand Bias, Fairness, and Explainability.
9๏ธโƒฃ Research & Practice ๐Ÿ“œ๐Ÿ”: Read Papers and Build Projects.
๐Ÿ”Ÿ Projects ๐Ÿ“‚๐Ÿš€: Compete in Kaggle and contribute to Open-Source.

React โค๏ธ for more

#ai
โค20๐Ÿ”ฅ3
๐Ÿš€๐Ÿ”ฅ ๐—•๐—ฒ๐—ฐ๐—ผ๐—บ๐—ฒ ๐—ฎ๐—ป ๐—”๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—”๐—œ ๐—•๐˜‚๐—ถ๐—น๐—ฑ๐—ฒ๐—ฟ โ€” ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ฃ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฎ๐—บ
Master the most in-demand AI skill in todayโ€™s job market: building autonomous AI systems.

In Ready Tensorโ€™s free, project-first program, youโ€™ll create three portfolio-ready projects using ๐—Ÿ๐—ฎ๐—ป๐—ด๐—–๐—ต๐—ฎ๐—ถ๐—ป, ๐—Ÿ๐—ฎ๐—ป๐—ด๐—š๐—ฟ๐—ฎ๐—ฝ๐—ต, and vector databases โ€” and deploy production-ready agents that employers will notice.

Includes guided lectures, videos, and code.
๐—™๐—ฟ๐—ฒ๐—ฒ. ๐—ฆ๐—ฒ๐—น๐—ณ-๐—ฝ๐—ฎ๐—ฐ๐—ฒ๐—ฑ. ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ-๐—ฐ๐—ต๐—ฎ๐—ป๐—ด๐—ถ๐—ป๐—ด.

๐Ÿ‘‰ Apply now: https://go.readytensor.ai/cert-550-agentic-ai-certification

React โ™ฅ๏ธ for more
โค2๐Ÿ‘2
Artificial Intelligence pinned ยซ๐Ÿš€๐Ÿ”ฅ ๐—•๐—ฒ๐—ฐ๐—ผ๐—บ๐—ฒ ๐—ฎ๐—ป ๐—”๐—ด๐—ฒ๐—ป๐˜๐—ถ๐—ฐ ๐—”๐—œ ๐—•๐˜‚๐—ถ๐—น๐—ฑ๐—ฒ๐—ฟ โ€” ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ฃ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฎ๐—บ Master the most in-demand AI skill in todayโ€™s job market: building autonomous AI systems. In Ready Tensorโ€™s free, project-first program, youโ€™ll create three portfolio-ready projects using ๐—Ÿ๐—ฎ๐—ป๐—ด๐—–๐—ต๐—ฎ๐—ถ๐—ปโ€ฆยป
AI vs ML vs Deep Learning ๐Ÿค–

Youโ€™ve probably seen these 3 terms thrown around like theyโ€™re the same thing. Theyโ€™re not.

AI (Artificial Intelligence): the big umbrella. Anything that makes machines โ€œsmart.โ€ Could be rules, could be learning.

ML (Machine Learning): a subset of AI. Machines learn patterns from data instead of being explicitly programmed.

Deep Learning: a subset of ML. Uses neural networks with many layers (deep) powering things like ChatGPT, image recognition, etc.

Think of it this way:
AI = Science
ML = A chapter in the science
Deep Learning = A paragraph in that chapter.
โค9๐Ÿ‘1
Want to become a Data Scientist?

Hereโ€™s a quick roadmap with essential concepts:

1. Mathematics & Statistics

Linear Algebra: Matrix operations, eigenvalues, eigenvectors, and decomposition, which are crucial for machine learning.

Probability & Statistics: Hypothesis testing, probability distributions, Bayesian inference, confidence intervals, and statistical significance.

Calculus: Derivatives, integrals, and gradients, especially partial derivatives, which are essential for understanding model optimization.


2. Programming

Python or R: Choose a primary programming language for data science.

Python: Libraries like NumPy, Pandas for data manipulation, and Scikit-Learn for machine learning.

R: Especially popular in academia and finance, with libraries like dplyr and ggplot2 for data manipulation and visualization.


SQL: Master querying and database management, essential for accessing, joining, and filtering large datasets.


3. Data Wrangling & Preprocessing

Data Cleaning: Handle missing values, outliers, duplicates, and data formatting.
Feature Engineering: Create meaningful features, handle categorical variables, and apply transformations (scaling, encoding, etc.).
Exploratory Data Analysis (EDA): Visualize data distributions, correlations, and trends to generate hypotheses and insights.


4. Data Visualization

Python Libraries: Use Matplotlib, Seaborn, and Plotly to visualize data.
Tableau or Power BI: Learn interactive visualization tools for building dashboards.
Storytelling: Develop skills to interpret and present data in a meaningful way to stakeholders.


5. Machine Learning

Supervised Learning: Understand algorithms like Linear Regression, Logistic Regression, Decision Trees, Random Forest, Gradient Boosting, and Support Vector Machines (SVM).
Unsupervised Learning: Study clustering (K-means, DBSCAN) and dimensionality reduction (PCA, t-SNE).
Evaluation Metrics: Understand accuracy, precision, recall, F1-score for classification and RMSE, MAE for regression.


6. Advanced Machine Learning & Deep Learning

Neural Networks: Understand the basics of neural networks and backpropagation.
Deep Learning: Get familiar with Convolutional Neural Networks (CNNs) for image processing and Recurrent Neural Networks (RNNs) for sequential data.
Transfer Learning: Apply pre-trained models for specific use cases.
Frameworks: Use TensorFlow Keras for building deep learning models.


7. Natural Language Processing (NLP)

Text Preprocessing: Tokenization, stemming, lemmatization, stop-word removal.
NLP Techniques: Understand bag-of-words, TF-IDF, and word embeddings (Word2Vec, GloVe).
NLP Models: Work with recurrent neural networks (RNNs), transformers (BERT, GPT) for text classification, sentiment analysis, and translation.


8. Big Data Tools (Optional)

Distributed Data Processing: Learn Hadoop and Spark for handling large datasets. Use Google BigQuery for big data storage and processing.


9. Data Science Workflows & Pipelines (Optional)

ETL & Data Pipelines: Extract, Transform, and Load data using tools like Apache Airflow for automation. Set up reproducible workflows for data transformation, modeling, and monitoring.
Model Deployment: Deploy models in production using Flask, FastAPI, or cloud services (AWS SageMaker, Google AI Platform).


10. Model Validation & Tuning

Cross-Validation: Techniques like K-fold cross-validation to avoid overfitting.
Hyperparameter Tuning: Use Grid Search, Random Search, and Bayesian Optimization to optimize model performance.
Bias-Variance Trade-off: Understand how to balance bias and variance in models for better generalization.


11. Time Series Analysis

Statistical Models: ARIMA, SARIMA, and Holt-Winters for time-series forecasting.
Time Series: Handle seasonality, trends, and lags. Use LSTMs or Prophet for more advanced time-series forecasting.


12. Experimentation & A/B Testing

Experiment Design: Learn how to set up and analyze controlled experiments.
A/B Testing: Statistical techniques for comparing groups & measuring the impact of changes.

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘

#datascience
โค5
๐Ÿ”ฅ 7 Small but Powerful Language Models You Should Know

โšก google/gemma-3-270M-it
Ultra-light (270M params) โš™๏ธ Runs on low resources, 32K context. Great for Q&A, summarization & reasoning.

๐ŸŒ Qwen/Qwen3-0.6B
Efficient 600M model ๐Ÿง  Switches between โ€œthinkingโ€ (reasoning, coding) & โ€œfastโ€ chat. Supports 100+ languages.

๐Ÿ’ก HuggingFaceTB/SmolLM3-3B
Open 3B model ๐Ÿ”“ Strong in math, coding, multilingual tasks + tool calling. Transparent training & open weights.

๐Ÿ“ Qwen/Qwen3-4B-Instruct-2507
Instruction-tuned 4B โšก Optimized for fast, accurate responses (non-thinking mode). Excels in logic, coding & creative tasks.

๐Ÿ–ผ๏ธ google/gemma-3-4b-it
Multimodal 4B ๐Ÿ–Š๏ธ Handles text + images with 128K context. Great for QA, summarization & fine-tuning.

๐Ÿค– janhq/Jan-v1-4B
Agentic reasoning model ๐Ÿ” Built for the Jan app. Tool use + strong reasoning, 91% accuracy on SimpleQA.

๐Ÿ“˜ microsoft/Phi-4-mini-instruct
Compact 3.8B ๐Ÿ“Š Trained on high-quality data. Excels at math, logic & multilingual. Supports function calling + 128K context.
โค6๐Ÿ”ฅ2
Python Interview Questions with Answers
โค5๐Ÿ”ฅ2
Hey Guys๐Ÿ‘‹,

The Average Salary Of a Data Scientist is 14LPA 

๐๐ž๐œ๐จ๐ฆ๐ž ๐š ๐‚๐ž๐ซ๐ญ๐ข๐Ÿ๐ข๐ž๐ ๐ƒ๐š๐ญ๐š ๐’๐œ๐ข๐ž๐ง๐ญ๐ข๐ฌ๐ญ ๐ˆ๐ง ๐“๐จ๐ฉ ๐Œ๐๐‚๐ฌ๐Ÿ˜

We help you master the required skills.

Learn by doing, build Industry level projects

๐Ÿ‘ฉโ€๐ŸŽ“ 1500+ Students Placed
๐Ÿ’ผ 7.2 LPA Avg. Package
๐Ÿ’ฐ 41 LPA Highest Package
๐Ÿค 450+ Hiring Partners

Apply for FREE๐Ÿ‘‡ :
https://go.acciojob.com/RYFvdU

( Limited Slots )
โค2
Deep Learning with Python

๐Ÿ“š book
โค13๐Ÿ‘2
๐Ÿ‘2
An Artificial Neuron Network (ANN), popularly known as Neural Network is a computational model based on the structure and functions of biological neural networks. It is like an artificial human nervous system for receiving, processing, and transmitting information in terms of Computer Science.

Basically, there are 3 different layers in a neural network :

Input Layer (All the inputs are fed in the model through this layer)

Hidden Layers (There can be more than one hidden layers which are used for processing the inputs received from the input layers)

Output Layer (The data after processing is made available at the output layer)

Graph data can be used with a lot of learning tasks contain a lot rich relation data among elements. For example, modeling physics system, predicting protein interface, and classifying diseases require that a model learns from graph inputs. Graph reasoning models can also be used for learning from non-structural data like texts and images and reasoning on extracted structures.
โค12๐Ÿ‘5