Here is the list of few projects (found on kaggle). They cover Basics of Python, Advanced Statistics, Supervised Learning (Regression and Classification problems) & Data Science
Please also check the discussions and notebook submissions for different approaches and solution after you tried yourself.
1. Basic python and statistics
Pima Indians :- https://www.kaggle.com/uciml/pima-indians-diabetes-database
Cardio Goodness fit :- https://www.kaggle.com/saurav9786/cardiogoodfitness
Automobile :- https://www.kaggle.com/toramky/automobile-dataset
2. Advanced Statistics
Game of Thrones:-https://www.kaggle.com/mylesoneill/game-of-thrones
World University Ranking:-https://www.kaggle.com/mylesoneill/world-university-rankings
IMDB Movie Dataset:- https://www.kaggle.com/carolzhangdc/imdb-5000-movie-dataset
3. Supervised Learning
a) Regression Problems
How much did it rain :- https://www.kaggle.com/c/how-much-did-it-rain-ii/overview
Inventory Demand:- https://www.kaggle.com/c/grupo-bimbo-inventory-demand
Property Inspection predictiion:- https://www.kaggle.com/c/liberty-mutual-group-property-inspection-prediction
Restaurant Revenue prediction:- https://www.kaggle.com/c/restaurant-revenue-prediction/data
IMDB Box office Prediction:-https://www.kaggle.com/c/tmdb-box-office-prediction/overview
b) Classification problems
Employee Access challenge :- https://www.kaggle.com/c/amazon-employee-access-challenge/overview
Titanic :- https://www.kaggle.com/c/titanic
San Francisco crime:- https://www.kaggle.com/c/sf-crime
Customer satisfcation:-https://www.kaggle.com/c/santander-customer-satisfaction
Trip type classification:- https://www.kaggle.com/c/walmart-recruiting-trip-type-classification
Categorize cusine:- https://www.kaggle.com/c/whats-cooking
4. Some helpful Data science projects for beginners
https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/c/digit-recognizer
https://www.kaggle.com/c/titanic
5. Intermediate Level Data science Projects
Black Friday Data : https://www.kaggle.com/sdolezel/black-friday
Human Activity Recognition Data : https://www.kaggle.com/uciml/human-activity-recognition-with-smartphones
Trip History Data : https://www.kaggle.com/pronto/cycle-share-dataset
Million Song Data : https://www.kaggle.com/c/msdchallenge
Census Income Data : https://www.kaggle.com/c/census-income/data
Movie Lens Data : https://www.kaggle.com/grouplens/movielens-20m-dataset
Twitter Classification Data : https://www.kaggle.com/c/twitter-sentiment-analysis2
Share with credits: https://t.iss.one/sqlproject
ENJOY LEARNING ππ
Please also check the discussions and notebook submissions for different approaches and solution after you tried yourself.
1. Basic python and statistics
Pima Indians :- https://www.kaggle.com/uciml/pima-indians-diabetes-database
Cardio Goodness fit :- https://www.kaggle.com/saurav9786/cardiogoodfitness
Automobile :- https://www.kaggle.com/toramky/automobile-dataset
2. Advanced Statistics
Game of Thrones:-https://www.kaggle.com/mylesoneill/game-of-thrones
World University Ranking:-https://www.kaggle.com/mylesoneill/world-university-rankings
IMDB Movie Dataset:- https://www.kaggle.com/carolzhangdc/imdb-5000-movie-dataset
3. Supervised Learning
a) Regression Problems
How much did it rain :- https://www.kaggle.com/c/how-much-did-it-rain-ii/overview
Inventory Demand:- https://www.kaggle.com/c/grupo-bimbo-inventory-demand
Property Inspection predictiion:- https://www.kaggle.com/c/liberty-mutual-group-property-inspection-prediction
Restaurant Revenue prediction:- https://www.kaggle.com/c/restaurant-revenue-prediction/data
IMDB Box office Prediction:-https://www.kaggle.com/c/tmdb-box-office-prediction/overview
b) Classification problems
Employee Access challenge :- https://www.kaggle.com/c/amazon-employee-access-challenge/overview
Titanic :- https://www.kaggle.com/c/titanic
San Francisco crime:- https://www.kaggle.com/c/sf-crime
Customer satisfcation:-https://www.kaggle.com/c/santander-customer-satisfaction
Trip type classification:- https://www.kaggle.com/c/walmart-recruiting-trip-type-classification
Categorize cusine:- https://www.kaggle.com/c/whats-cooking
4. Some helpful Data science projects for beginners
https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/c/digit-recognizer
https://www.kaggle.com/c/titanic
5. Intermediate Level Data science Projects
Black Friday Data : https://www.kaggle.com/sdolezel/black-friday
Human Activity Recognition Data : https://www.kaggle.com/uciml/human-activity-recognition-with-smartphones
Trip History Data : https://www.kaggle.com/pronto/cycle-share-dataset
Million Song Data : https://www.kaggle.com/c/msdchallenge
Census Income Data : https://www.kaggle.com/c/census-income/data
Movie Lens Data : https://www.kaggle.com/grouplens/movielens-20m-dataset
Twitter Classification Data : https://www.kaggle.com/c/twitter-sentiment-analysis2
Share with credits: https://t.iss.one/sqlproject
ENJOY LEARNING ππ
β€3
Artificial Intelligence (AI) Roadmap
|
|-- Fundamentals
| |-- Mathematics
| | |-- Linear Algebra
| | |-- Calculus
| | |-- Probability and Statistics
| |
| |-- Programming
| | |-- Python (Focus on Libraries like NumPy, Pandas)
| | |-- Java or C++ (optional but useful)
| |
| |-- Algorithms and Data Structures
| | |-- Graphs and Trees
| | |-- Dynamic Programming
| | |-- Search Algorithms (e.g., A*, Minimax)
|
|-- Core AI Concepts
| |-- Knowledge Representation
| |-- Search Methods (DFS, BFS)
| |-- Constraint Satisfaction Problems
| |-- Logical Reasoning
|
|-- Machine Learning (ML)
| |-- Supervised Learning (Regression, Classification)
| |-- Unsupervised Learning (Clustering, Dimensionality Reduction)
| |-- Reinforcement Learning (Q-Learning, Policy Gradient Methods)
| |-- Ensemble Methods (Random Forest, Gradient Boosting)
|
|-- Deep Learning (DL)
| |-- Neural Networks
| |-- Convolutional Neural Networks (CNNs)
| |-- Recurrent Neural Networks (RNNs)
| |-- Transformers (BERT, GPT)
| |-- Frameworks (TensorFlow, PyTorch)
|
|-- Natural Language Processing (NLP)
| |-- Text Preprocessing (Tokenization, Lemmatization)
| |-- NLP Models (Word2Vec, BERT)
| |-- Applications (Chatbots, Sentiment Analysis, NER)
|
|-- Computer Vision
| |-- Image Processing
| |-- Object Detection (YOLO, SSD)
| |-- Image Segmentation
| |-- Applications (Facial Recognition, OCR)
|
|-- Ethical AI
| |-- Fairness and Bias
| |-- Privacy and Security
| |-- Explainability (SHAP, LIME)
|
|-- Applications of AI
| |-- Healthcare (Diagnostics, Personalized Medicine)
| |-- Finance (Fraud Detection, Algorithmic Trading)
| |-- Retail (Recommendation Systems, Inventory Management)
| |-- Autonomous Vehicles (Perception, Control Systems)
|
|-- AI Deployment
| |-- Model Serving (Flask, FastAPI)
| |-- Cloud Platforms (AWS SageMaker, Google AI)
| |-- Edge AI (TensorFlow Lite, ONNX)
|
|-- Advanced Topics
| |-- Multi-Agent Systems
| |-- Generative Models (GANs, VAEs)
| |-- Knowledge Graphs
| |-- AI in Quantum Computing
Best Resources to learn ML & AI π
Learn Python for Free
Prompt Engineering Course
Prompt Engineering Guide
Data Science Course
Google Cloud Generative AI Path
Machine Learning with Python Free Course
Machine Learning Free Book
Artificial Intelligence WhatsApp channel
Hands-on Machine Learning
Deep Learning Nanodegree Program with Real-world Projects
AI, Machine Learning and Deep Learning
Like this post for more roadmaps β€οΈ
Follow & share the channel link with your friends: t.iss.one/free4unow_backup
ENJOY LEARNINGππ
|
|-- Fundamentals
| |-- Mathematics
| | |-- Linear Algebra
| | |-- Calculus
| | |-- Probability and Statistics
| |
| |-- Programming
| | |-- Python (Focus on Libraries like NumPy, Pandas)
| | |-- Java or C++ (optional but useful)
| |
| |-- Algorithms and Data Structures
| | |-- Graphs and Trees
| | |-- Dynamic Programming
| | |-- Search Algorithms (e.g., A*, Minimax)
|
|-- Core AI Concepts
| |-- Knowledge Representation
| |-- Search Methods (DFS, BFS)
| |-- Constraint Satisfaction Problems
| |-- Logical Reasoning
|
|-- Machine Learning (ML)
| |-- Supervised Learning (Regression, Classification)
| |-- Unsupervised Learning (Clustering, Dimensionality Reduction)
| |-- Reinforcement Learning (Q-Learning, Policy Gradient Methods)
| |-- Ensemble Methods (Random Forest, Gradient Boosting)
|
|-- Deep Learning (DL)
| |-- Neural Networks
| |-- Convolutional Neural Networks (CNNs)
| |-- Recurrent Neural Networks (RNNs)
| |-- Transformers (BERT, GPT)
| |-- Frameworks (TensorFlow, PyTorch)
|
|-- Natural Language Processing (NLP)
| |-- Text Preprocessing (Tokenization, Lemmatization)
| |-- NLP Models (Word2Vec, BERT)
| |-- Applications (Chatbots, Sentiment Analysis, NER)
|
|-- Computer Vision
| |-- Image Processing
| |-- Object Detection (YOLO, SSD)
| |-- Image Segmentation
| |-- Applications (Facial Recognition, OCR)
|
|-- Ethical AI
| |-- Fairness and Bias
| |-- Privacy and Security
| |-- Explainability (SHAP, LIME)
|
|-- Applications of AI
| |-- Healthcare (Diagnostics, Personalized Medicine)
| |-- Finance (Fraud Detection, Algorithmic Trading)
| |-- Retail (Recommendation Systems, Inventory Management)
| |-- Autonomous Vehicles (Perception, Control Systems)
|
|-- AI Deployment
| |-- Model Serving (Flask, FastAPI)
| |-- Cloud Platforms (AWS SageMaker, Google AI)
| |-- Edge AI (TensorFlow Lite, ONNX)
|
|-- Advanced Topics
| |-- Multi-Agent Systems
| |-- Generative Models (GANs, VAEs)
| |-- Knowledge Graphs
| |-- AI in Quantum Computing
Best Resources to learn ML & AI π
Learn Python for Free
Prompt Engineering Course
Prompt Engineering Guide
Data Science Course
Google Cloud Generative AI Path
Machine Learning with Python Free Course
Machine Learning Free Book
Artificial Intelligence WhatsApp channel
Hands-on Machine Learning
Deep Learning Nanodegree Program with Real-world Projects
AI, Machine Learning and Deep Learning
Like this post for more roadmaps β€οΈ
Follow & share the channel link with your friends: t.iss.one/free4unow_backup
ENJOY LEARNINGππ
β€12
If I Were to Start My Data Science Career from Scratch, Here's What I Would Do π
1οΈβ£ Master Advanced SQL
Foundations: Learn database structures, tables, and relationships.
Basic SQL Commands: SELECT, FROM, WHERE, ORDER BY.
Aggregations: Get hands-on with SUM, COUNT, AVG, MIN, MAX, GROUP BY, and HAVING.
JOINs: Understand LEFT, RIGHT, INNER, OUTER, and CARTESIAN joins.
Advanced Concepts: CTEs, window functions, and query optimization.
Metric Development: Build and report metrics effectively.
2οΈβ£ Study Statistics & A/B Testing
Descriptive Statistics: Know your mean, median, mode, and standard deviation.
Distributions: Familiarize yourself with normal, Bernoulli, binomial, exponential, and uniform distributions.
Probability: Understand basic probability and Bayes' theorem.
Intro to ML: Start with linear regression, decision trees, and K-means clustering.
Experimentation Basics: T-tests, Z-tests, Type 1 & Type 2 errors.
A/B Testing: Design experimentsβhypothesis formation, sample size calculation, and sample biases.
3οΈβ£ Learn Python for Data
Data Manipulation: Use pandas for data cleaning and manipulation.
Data Visualization: Explore matplotlib and seaborn for creating visualizations.
Hypothesis Testing: Dive into scipy for statistical testing.
Basic Modeling: Practice building models with scikit-learn.
4οΈβ£ Develop Product Sense
Product Management Basics: Manage projects and understand the product life cycle.
Data-Driven Strategy: Leverage data to inform decisions and measure success.
Metrics in Business: Define and evaluate metrics that matter to the business.
5οΈβ£ Hone Soft Skills
Communication: Clearly explain data findings to technical and non-technical audiences.
Collaboration: Work effectively in teams.
Time Management: Prioritize and manage projects efficiently.
Self-Reflection: Regularly assess and improve your skills.
6οΈβ£ Bonus: Basic Data Engineering
Data Modeling: Understand dimensional modeling and trade-offs in normalization vs. denormalization.
ETL: Set up extraction jobs, manage dependencies, clean and validate data.
Pipeline Testing: Conduct unit testing and ensure data quality throughout the pipeline.
I have curated the best interview resources to crack Data Science Interviews
ππ
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Like if you need similar content ππ
1οΈβ£ Master Advanced SQL
Foundations: Learn database structures, tables, and relationships.
Basic SQL Commands: SELECT, FROM, WHERE, ORDER BY.
Aggregations: Get hands-on with SUM, COUNT, AVG, MIN, MAX, GROUP BY, and HAVING.
JOINs: Understand LEFT, RIGHT, INNER, OUTER, and CARTESIAN joins.
Advanced Concepts: CTEs, window functions, and query optimization.
Metric Development: Build and report metrics effectively.
2οΈβ£ Study Statistics & A/B Testing
Descriptive Statistics: Know your mean, median, mode, and standard deviation.
Distributions: Familiarize yourself with normal, Bernoulli, binomial, exponential, and uniform distributions.
Probability: Understand basic probability and Bayes' theorem.
Intro to ML: Start with linear regression, decision trees, and K-means clustering.
Experimentation Basics: T-tests, Z-tests, Type 1 & Type 2 errors.
A/B Testing: Design experimentsβhypothesis formation, sample size calculation, and sample biases.
3οΈβ£ Learn Python for Data
Data Manipulation: Use pandas for data cleaning and manipulation.
Data Visualization: Explore matplotlib and seaborn for creating visualizations.
Hypothesis Testing: Dive into scipy for statistical testing.
Basic Modeling: Practice building models with scikit-learn.
4οΈβ£ Develop Product Sense
Product Management Basics: Manage projects and understand the product life cycle.
Data-Driven Strategy: Leverage data to inform decisions and measure success.
Metrics in Business: Define and evaluate metrics that matter to the business.
5οΈβ£ Hone Soft Skills
Communication: Clearly explain data findings to technical and non-technical audiences.
Collaboration: Work effectively in teams.
Time Management: Prioritize and manage projects efficiently.
Self-Reflection: Regularly assess and improve your skills.
6οΈβ£ Bonus: Basic Data Engineering
Data Modeling: Understand dimensional modeling and trade-offs in normalization vs. denormalization.
ETL: Set up extraction jobs, manage dependencies, clean and validate data.
Pipeline Testing: Conduct unit testing and ensure data quality throughout the pipeline.
I have curated the best interview resources to crack Data Science Interviews
ππ
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Like if you need similar content ππ
β€2
π° How to become a data scientist in 2025?
π¨π»βπ» If you want to become a data science professional, follow this path! I've prepared a complete roadmap with the best free resources where you can learn the essential skills in this field.
π’ Step 1: Strengthen your math and statistics!
βοΈ The foundation of learning data science is mathematics, linear algebra, statistics, and probability. Topics you should master:
β Linear algebra: matrices, vectors, eigenvalues.
π Course: MIT 18.06 Linear Algebra
β Calculus: derivative, integral, optimization.
π Course: MIT Single Variable Calculus
β Statistics and probability: Bayes' theorem, hypothesis testing.
π Course: Statistics 110
βββββ
π’ Step 2: Learn to code.
βοΈ Learn Python and become proficient in coding. The most important topics you need to master are:
β Python: Pandas, NumPy, Matplotlib libraries
π Course: FreeCodeCamp Python Course
β SQL language: Join commands, Window functions, query optimization.
π Course: Stanford SQL Course
β Data structures and algorithms: arrays, linked lists, trees.
π Course: MIT Introduction to Algorithms
βββββ
π’ Step 3: Clean and visualize data
βοΈ Learn how to process and clean data and then create an engaging story from it!
β Data cleaning: Working with missing values ββand detecting outliers.
π Course: Data Cleaning
β Data visualization: Matplotlib, Seaborn, Tableau
π Course: Data Visualization Tutorial
βββββ
π’ Step 4: Learn Machine Learning
βοΈ It's time to enter the exciting world of machine learning! You should know these topics:
β Supervised learning: regression, classification.
β Unsupervised learning: clustering, PCA, anomaly detection.
β Deep learning: neural networks, CNN, RNN
π Course: CS229: Machine Learning
βββββ
π’ Step 5: Working with Big Data and Cloud Technologies
βοΈ If you're going to work in the real world, you need to know how to work with Big Data and cloud computing.
β Big Data Tools: Hadoop, Spark, Dask
β Cloud platforms: AWS, GCP, Azure
π Course: Data Engineering
βββββ
π’ Step 6: Do real projects!
βοΈ Enough theory, it's time to get coding! Do real projects and build a strong portfolio.
β Kaggle competitions: solving real-world challenges.
β End-to-End projects: data collection, modeling, implementation.
β GitHub: Publish your projects on GitHub.
π Platform: Kaggleπ Platform: ods.ai
βββββ
π’ Step 7: Learn MLOps and deploy models
βοΈ Machine learning is not just about building a model! You need to learn how to deploy and monitor a model.
β MLOps training: model versioning, monitoring, model retraining.
β Deployment models: Flask, FastAPI, Docker
π Course: Stanford MLOps Course
βββββ
π’ Step 8: Stay up to date and network
βοΈ Data science is changing every day, so it is necessary to update yourself every day and stay in regular contact with experienced people and experts in this field.
β Read scientific articles: arXiv, Google Scholar
β Connect with the data community:
π Site: Papers with code
π Site: AI Research at Google
π¨π»βπ» If you want to become a data science professional, follow this path! I've prepared a complete roadmap with the best free resources where you can learn the essential skills in this field.
π’ Step 1: Strengthen your math and statistics!
βοΈ The foundation of learning data science is mathematics, linear algebra, statistics, and probability. Topics you should master:
β Linear algebra: matrices, vectors, eigenvalues.
π Course: MIT 18.06 Linear Algebra
β Calculus: derivative, integral, optimization.
π Course: MIT Single Variable Calculus
β Statistics and probability: Bayes' theorem, hypothesis testing.
π Course: Statistics 110
βββββ
π’ Step 2: Learn to code.
βοΈ Learn Python and become proficient in coding. The most important topics you need to master are:
β Python: Pandas, NumPy, Matplotlib libraries
π Course: FreeCodeCamp Python Course
β SQL language: Join commands, Window functions, query optimization.
π Course: Stanford SQL Course
β Data structures and algorithms: arrays, linked lists, trees.
π Course: MIT Introduction to Algorithms
βββββ
π’ Step 3: Clean and visualize data
βοΈ Learn how to process and clean data and then create an engaging story from it!
β Data cleaning: Working with missing values ββand detecting outliers.
π Course: Data Cleaning
β Data visualization: Matplotlib, Seaborn, Tableau
π Course: Data Visualization Tutorial
βββββ
π’ Step 4: Learn Machine Learning
βοΈ It's time to enter the exciting world of machine learning! You should know these topics:
β Supervised learning: regression, classification.
β Unsupervised learning: clustering, PCA, anomaly detection.
β Deep learning: neural networks, CNN, RNN
π Course: CS229: Machine Learning
βββββ
π’ Step 5: Working with Big Data and Cloud Technologies
βοΈ If you're going to work in the real world, you need to know how to work with Big Data and cloud computing.
β Big Data Tools: Hadoop, Spark, Dask
β Cloud platforms: AWS, GCP, Azure
π Course: Data Engineering
βββββ
π’ Step 6: Do real projects!
βοΈ Enough theory, it's time to get coding! Do real projects and build a strong portfolio.
β Kaggle competitions: solving real-world challenges.
β End-to-End projects: data collection, modeling, implementation.
β GitHub: Publish your projects on GitHub.
π Platform: Kaggleπ Platform: ods.ai
βββββ
π’ Step 7: Learn MLOps and deploy models
βοΈ Machine learning is not just about building a model! You need to learn how to deploy and monitor a model.
β MLOps training: model versioning, monitoring, model retraining.
β Deployment models: Flask, FastAPI, Docker
π Course: Stanford MLOps Course
βββββ
π’ Step 8: Stay up to date and network
βοΈ Data science is changing every day, so it is necessary to update yourself every day and stay in regular contact with experienced people and experts in this field.
β Read scientific articles: arXiv, Google Scholar
β Connect with the data community:
π Site: Papers with code
π Site: AI Research at Google
#ArtificialIntelligence #AI #MachineLearning #LargeLanguageModels #LLMs #DeepLearning #NLP #NaturalLanguageProcessing #AIResearch #TechBooks #AIApplications #DataScience #FutureOfAI #AIEducation #LearnAI #TechInnovation #AIethics #GPT #BERT #T5 #AIBook #data
β€9π₯°1
For those of you who are new to Neural Networks, let me try to give you a brief overview.
Neural networks are computational models inspired by the human brain's structure and function. They consist of interconnected layers of nodes (or neurons) that process data and learn patterns. Here's a brief overview:
1. Structure: Neural networks have three main types of layers:
- Input layer: Receives the initial data.
- Hidden layers: Intermediate layers that process the input data through weighted connections.
- Output layer: Produces the final output or prediction.
2. Neurons and Connections: Each neuron receives input from several other neurons, processes this input through a weighted sum, and applies an activation function to determine the output. This output is then passed to the neurons in the next layer.
3. Training: Neural networks learn by adjusting the weights of the connections between neurons using a process called backpropagation, which involves:
- Forward pass: Calculating the output based on current weights.
- Loss calculation: Comparing the output to the actual result using a loss function.
- Backward pass: Adjusting the weights to minimize the loss using optimization algorithms like gradient descent.
4. Activation Functions: Functions like ReLU, Sigmoid, or Tanh are used to introduce non-linearity into the network, enabling it to learn complex patterns.
5. Applications: Neural networks are used in various fields, including image and speech recognition, natural language processing, and game playing, among others.
Overall, neural networks are powerful tools for modeling and solving complex problems by learning from data.
30 Days of Data Science: https://t.iss.one/datasciencefun/1704
Like if you want me to continue data science series πβ€οΈ
ENJOY LEARNING ππ
Neural networks are computational models inspired by the human brain's structure and function. They consist of interconnected layers of nodes (or neurons) that process data and learn patterns. Here's a brief overview:
1. Structure: Neural networks have three main types of layers:
- Input layer: Receives the initial data.
- Hidden layers: Intermediate layers that process the input data through weighted connections.
- Output layer: Produces the final output or prediction.
2. Neurons and Connections: Each neuron receives input from several other neurons, processes this input through a weighted sum, and applies an activation function to determine the output. This output is then passed to the neurons in the next layer.
3. Training: Neural networks learn by adjusting the weights of the connections between neurons using a process called backpropagation, which involves:
- Forward pass: Calculating the output based on current weights.
- Loss calculation: Comparing the output to the actual result using a loss function.
- Backward pass: Adjusting the weights to minimize the loss using optimization algorithms like gradient descent.
4. Activation Functions: Functions like ReLU, Sigmoid, or Tanh are used to introduce non-linearity into the network, enabling it to learn complex patterns.
5. Applications: Neural networks are used in various fields, including image and speech recognition, natural language processing, and game playing, among others.
Overall, neural networks are powerful tools for modeling and solving complex problems by learning from data.
30 Days of Data Science: https://t.iss.one/datasciencefun/1704
Like if you want me to continue data science series πβ€οΈ
ENJOY LEARNING ππ
β€5π₯°1
Coding Project Ideas with AI ππ
1. Sentiment Analysis Tool: Develop a tool that uses AI to analyze the sentiment of text data, such as social media posts, customer reviews, or news articles. The tool could classify the sentiment as positive, negative, or neutral.
2. Image Recognition App: Create an app that uses AI image recognition algorithms to identify objects, scenes, or people in images. This could be useful for applications like automatic photo tagging or security surveillance.
3. Chatbot Development: Build a chatbot using AI natural language processing techniques to interact with users and provide information or assistance on a specific topic. You could integrate the chatbot into a website or messaging platform.
4. Recommendation System: Develop a recommendation system that uses AI algorithms to suggest products, movies, music, or other items based on user preferences and behavior. This could enhance the user experience on e-commerce platforms or streaming services.
5. Fraud Detection System: Create a fraud detection system that uses AI to analyze patterns and anomalies in financial transactions data. The system could help identify potentially fraudulent activities and prevent financial losses.
6. Health Monitoring App: Build an app that uses AI to monitor health data, such as heart rate, sleep patterns, or activity levels, and provide personalized recommendations for improving health and wellness.
7. Language Translation Tool: Develop a language translation tool that uses AI machine translation algorithms to translate text between different languages accurately and efficiently.
8. Autonomous Driving System: Work on a project to develop an autonomous driving system that uses AI computer vision and sensor data processing to navigate vehicles safely and efficiently on roads.
9. Personalized Content Generator: Create a tool that uses AI natural language generation techniques to generate personalized content, such as articles, emails, or marketing messages tailored to individual preferences.
10. Music Recommendation Engine: Build a music recommendation engine that uses AI algorithms to analyze music preferences and suggest playlists or songs based on user tastes and listening habits.
Join for more: https://t.iss.one/Programming_experts
ENJOY LEARNING ππ
1. Sentiment Analysis Tool: Develop a tool that uses AI to analyze the sentiment of text data, such as social media posts, customer reviews, or news articles. The tool could classify the sentiment as positive, negative, or neutral.
2. Image Recognition App: Create an app that uses AI image recognition algorithms to identify objects, scenes, or people in images. This could be useful for applications like automatic photo tagging or security surveillance.
3. Chatbot Development: Build a chatbot using AI natural language processing techniques to interact with users and provide information or assistance on a specific topic. You could integrate the chatbot into a website or messaging platform.
4. Recommendation System: Develop a recommendation system that uses AI algorithms to suggest products, movies, music, or other items based on user preferences and behavior. This could enhance the user experience on e-commerce platforms or streaming services.
5. Fraud Detection System: Create a fraud detection system that uses AI to analyze patterns and anomalies in financial transactions data. The system could help identify potentially fraudulent activities and prevent financial losses.
6. Health Monitoring App: Build an app that uses AI to monitor health data, such as heart rate, sleep patterns, or activity levels, and provide personalized recommendations for improving health and wellness.
7. Language Translation Tool: Develop a language translation tool that uses AI machine translation algorithms to translate text between different languages accurately and efficiently.
8. Autonomous Driving System: Work on a project to develop an autonomous driving system that uses AI computer vision and sensor data processing to navigate vehicles safely and efficiently on roads.
9. Personalized Content Generator: Create a tool that uses AI natural language generation techniques to generate personalized content, such as articles, emails, or marketing messages tailored to individual preferences.
10. Music Recommendation Engine: Build a music recommendation engine that uses AI algorithms to analyze music preferences and suggest playlists or songs based on user tastes and listening habits.
Join for more: https://t.iss.one/Programming_experts
ENJOY LEARNING ππ
β€5
If you want to Excel in Data Science and become an expert, master these essential concepts:
Core Data Science Skills:
β’ Python for Data Science β Pandas, NumPy, Matplotlib, Seaborn
β’ SQL for Data Extraction β SELECT, JOIN, GROUP BY, CTEs, Window Functions
β’ Data Cleaning & Preprocessing β Handling missing data, outliers, duplicates
β’ Exploratory Data Analysis (EDA) β Visualizing data trends
Machine Learning (ML):
β’ Supervised Learning β Linear Regression, Decision Trees, Random Forest
β’ Unsupervised Learning β Clustering, PCA, Anomaly Detection
β’ Model Evaluation β Cross-validation, Confusion Matrix, ROC-AUC
β’ Hyperparameter Tuning β Grid Search, Random Search
Deep Learning (DL):
β’ Neural Networks β TensorFlow, PyTorch, Keras
β’ CNNs & RNNs β Image & sequential data processing
β’ Transformers & LLMs β GPT, BERT, Stable Diffusion
Big Data & Cloud Computing:
β’ Hadoop & Spark β Handling large datasets
β’ AWS, GCP, Azure β Cloud-based data science solutions
β’ MLOps β Deploy models using Flask, FastAPI, Docker
Statistics & Mathematics for Data Science:
β’ Probability & Hypothesis Testing β P-values, T-tests, Chi-square
β’ Linear Algebra & Calculus β Matrices, Vectors, Derivatives
β’ Time Series Analysis β ARIMA, Prophet, LSTMs
Real-World Applications:
β’ Recommendation Systems β Personalized AI suggestions
β’ NLP (Natural Language Processing) β Sentiment Analysis, Chatbots
β’ AI-Powered Business Insights β Data-driven decision-making
React β€οΈ for more
Core Data Science Skills:
β’ Python for Data Science β Pandas, NumPy, Matplotlib, Seaborn
β’ SQL for Data Extraction β SELECT, JOIN, GROUP BY, CTEs, Window Functions
β’ Data Cleaning & Preprocessing β Handling missing data, outliers, duplicates
β’ Exploratory Data Analysis (EDA) β Visualizing data trends
Machine Learning (ML):
β’ Supervised Learning β Linear Regression, Decision Trees, Random Forest
β’ Unsupervised Learning β Clustering, PCA, Anomaly Detection
β’ Model Evaluation β Cross-validation, Confusion Matrix, ROC-AUC
β’ Hyperparameter Tuning β Grid Search, Random Search
Deep Learning (DL):
β’ Neural Networks β TensorFlow, PyTorch, Keras
β’ CNNs & RNNs β Image & sequential data processing
β’ Transformers & LLMs β GPT, BERT, Stable Diffusion
Big Data & Cloud Computing:
β’ Hadoop & Spark β Handling large datasets
β’ AWS, GCP, Azure β Cloud-based data science solutions
β’ MLOps β Deploy models using Flask, FastAPI, Docker
Statistics & Mathematics for Data Science:
β’ Probability & Hypothesis Testing β P-values, T-tests, Chi-square
β’ Linear Algebra & Calculus β Matrices, Vectors, Derivatives
β’ Time Series Analysis β ARIMA, Prophet, LSTMs
Real-World Applications:
β’ Recommendation Systems β Personalized AI suggestions
β’ NLP (Natural Language Processing) β Sentiment Analysis, Chatbots
β’ AI-Powered Business Insights β Data-driven decision-making
React β€οΈ for more
β€5π₯°1π1
AI/ML Roadmap π€
π Step 1: Math Foundation
βπ Linear Algebra (Vectors, Matrices, Eigenvalues)
βπ Probability & Statistics (Distributions, Bayes, Sampling)
βπ Calculus (Derivatives, Gradients, Chain Rule)
βπ Optimization (Gradient Descent, Cost Functions)
π Step 2: Computer Science Basics
βπ Algorithms & Data Structures
βπ Time and Space Complexity
βπ OOPs & Design Principles
π Step 3: Programming for ML
βπ Python / R / Julia (pick one)
ββπ Numpy, Pandas
ββπ Data Visualization (Matplotlib, Seaborn, Plotly)
ββπ Data Preprocessing & Handling
π Step 4: Core Machine Learning
βπ ML Theory (Bias-Variance, Underfitting/Overfitting)
βπ Supervised Learning
βπ Unsupervised Learning
βπ Model Evaluation (Accuracy, ROC, Confusion Matrix)
βπ Scikit-Learn or Equivalent
π Step 5: Deep Learning
βπ Neural Networks Fundamentals
βπ Activation Functions, Loss Functions
βπ CNNs, RNNs, LSTMs
βπ Frameworks: TensorFlow or PyTorch
π Step 6: Specializations
βπ NLP (Text Classification, Transformers, BERT, LLMs)
βπ Computer Vision (Image Classification, Detection)
βπ Time Series Forecasting
βπ Recommendation Systems
π Step 7: MLOps & Deployment
βπ Model Packaging (Pickle, ONNX)
βπ Deployment (Flask, FastAPI, Streamlit)
βπ CI/CD & Cloud (AWS/GCP, Docker, MLflow)
π Step 8: Projects & Practice
βπ Kaggle Competitions
βπ Research Papers (arXiv, Papers with Code)
βπ GitHub Portfolio
βββπ Resume + LinkedIn Optimization
βββββ Apply for AI/ML Jobs or Internships
React "β€οΈ" For More
π Step 1: Math Foundation
βπ Linear Algebra (Vectors, Matrices, Eigenvalues)
βπ Probability & Statistics (Distributions, Bayes, Sampling)
βπ Calculus (Derivatives, Gradients, Chain Rule)
βπ Optimization (Gradient Descent, Cost Functions)
π Step 2: Computer Science Basics
βπ Algorithms & Data Structures
βπ Time and Space Complexity
βπ OOPs & Design Principles
π Step 3: Programming for ML
βπ Python / R / Julia (pick one)
ββπ Numpy, Pandas
ββπ Data Visualization (Matplotlib, Seaborn, Plotly)
ββπ Data Preprocessing & Handling
π Step 4: Core Machine Learning
βπ ML Theory (Bias-Variance, Underfitting/Overfitting)
βπ Supervised Learning
βπ Unsupervised Learning
βπ Model Evaluation (Accuracy, ROC, Confusion Matrix)
βπ Scikit-Learn or Equivalent
π Step 5: Deep Learning
βπ Neural Networks Fundamentals
βπ Activation Functions, Loss Functions
βπ CNNs, RNNs, LSTMs
βπ Frameworks: TensorFlow or PyTorch
π Step 6: Specializations
βπ NLP (Text Classification, Transformers, BERT, LLMs)
βπ Computer Vision (Image Classification, Detection)
βπ Time Series Forecasting
βπ Recommendation Systems
π Step 7: MLOps & Deployment
βπ Model Packaging (Pickle, ONNX)
βπ Deployment (Flask, FastAPI, Streamlit)
βπ CI/CD & Cloud (AWS/GCP, Docker, MLflow)
π Step 8: Projects & Practice
βπ Kaggle Competitions
βπ Research Papers (arXiv, Papers with Code)
βπ GitHub Portfolio
βββπ Resume + LinkedIn Optimization
βββββ Apply for AI/ML Jobs or Internships
React "β€οΈ" For More
β€10π₯1
Essential Topics to Master Data Science Interviews: π
SQL:
1. Foundations
- Craft SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Embrace Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Navigate through simple databases and tables
2. Intermediate SQL
- Utilize Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Embrace Subqueries and nested queries
- Master Common Table Expressions (WITH clause)
- Implement CASE statements for logical queries
3. Advanced SQL
- Explore Advanced JOIN techniques (self-join, non-equi join)
- Dive into Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- Optimize queries with indexing
- Execute Data manipulation (INSERT, UPDATE, DELETE)
Python:
1. Python Basics
- Grasp Syntax, variables, and data types
- Command Control structures (if-else, for and while loops)
- Understand Basic data structures (lists, dictionaries, sets, tuples)
- Master Functions, lambda functions, and error handling (try-except)
- Explore Modules and packages
2. Pandas & Numpy
- Create and manipulate DataFrames and Series
- Perfect Indexing, selecting, and filtering data
- Handle missing data (fillna, dropna)
- Aggregate data with groupby, summarizing data
- Merge, join, and concatenate datasets
3. Data Visualization with Python
- Plot with Matplotlib (line plots, bar plots, histograms)
- Visualize with Seaborn (scatter plots, box plots, pair plots)
- Customize plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)
Excel:
1. Excel Essentials
- Conduct Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Dive into charts and basic data visualization
- Sort and filter data, use Conditional formatting
2. Intermediate Excel
- Master Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- Leverage PivotTables and PivotCharts for summarizing data
- Utilize data validation tools
- Employ What-if analysis tools (Data Tables, Goal Seek)
3. Advanced Excel
- Harness Array formulas and advanced functions
- Dive into Data Model & Power Pivot
- Explore Advanced Filter, Slicers, and Timelines in Pivot Tables
- Create dynamic charts and interactive dashboards
Power BI:
1. Data Modeling in Power BI
- Import data from various sources
- Establish and manage relationships between datasets
- Grasp Data modeling basics (star schema, snowflake schema)
2. Data Transformation in Power BI
- Use Power Query for data cleaning and transformation
- Apply advanced data shaping techniques
- Create Calculated columns and measures using DAX
3. Data Visualization and Reporting in Power BI
- Craft interactive reports and dashboards
- Utilize Visualizations (bar, line, pie charts, maps)
- Publish and share reports, schedule data refreshes
Statistics Fundamentals:
- Mean, Median, Mode
- Standard Deviation, Variance
- Probability Distributions, Hypothesis Testing
- P-values, Confidence Intervals
- Correlation, Simple Linear Regression
- Normal Distribution, Binomial Distribution, Poisson Distribution.
Show some β€οΈ if you're ready to elevate your data science game! π
ENJOY LEARNING ππ
SQL:
1. Foundations
- Craft SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Embrace Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Navigate through simple databases and tables
2. Intermediate SQL
- Utilize Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Embrace Subqueries and nested queries
- Master Common Table Expressions (WITH clause)
- Implement CASE statements for logical queries
3. Advanced SQL
- Explore Advanced JOIN techniques (self-join, non-equi join)
- Dive into Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- Optimize queries with indexing
- Execute Data manipulation (INSERT, UPDATE, DELETE)
Python:
1. Python Basics
- Grasp Syntax, variables, and data types
- Command Control structures (if-else, for and while loops)
- Understand Basic data structures (lists, dictionaries, sets, tuples)
- Master Functions, lambda functions, and error handling (try-except)
- Explore Modules and packages
2. Pandas & Numpy
- Create and manipulate DataFrames and Series
- Perfect Indexing, selecting, and filtering data
- Handle missing data (fillna, dropna)
- Aggregate data with groupby, summarizing data
- Merge, join, and concatenate datasets
3. Data Visualization with Python
- Plot with Matplotlib (line plots, bar plots, histograms)
- Visualize with Seaborn (scatter plots, box plots, pair plots)
- Customize plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)
Excel:
1. Excel Essentials
- Conduct Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Dive into charts and basic data visualization
- Sort and filter data, use Conditional formatting
2. Intermediate Excel
- Master Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- Leverage PivotTables and PivotCharts for summarizing data
- Utilize data validation tools
- Employ What-if analysis tools (Data Tables, Goal Seek)
3. Advanced Excel
- Harness Array formulas and advanced functions
- Dive into Data Model & Power Pivot
- Explore Advanced Filter, Slicers, and Timelines in Pivot Tables
- Create dynamic charts and interactive dashboards
Power BI:
1. Data Modeling in Power BI
- Import data from various sources
- Establish and manage relationships between datasets
- Grasp Data modeling basics (star schema, snowflake schema)
2. Data Transformation in Power BI
- Use Power Query for data cleaning and transformation
- Apply advanced data shaping techniques
- Create Calculated columns and measures using DAX
3. Data Visualization and Reporting in Power BI
- Craft interactive reports and dashboards
- Utilize Visualizations (bar, line, pie charts, maps)
- Publish and share reports, schedule data refreshes
Statistics Fundamentals:
- Mean, Median, Mode
- Standard Deviation, Variance
- Probability Distributions, Hypothesis Testing
- P-values, Confidence Intervals
- Correlation, Simple Linear Regression
- Normal Distribution, Binomial Distribution, Poisson Distribution.
Show some β€οΈ if you're ready to elevate your data science game! π
ENJOY LEARNING ππ
β€5π₯1
AI Engineers can be quite successful in this role without ever training anything.
This is how:
1/ Leveraging pre-trained LLMs: Select and tune existing LLMs for specific tasks. Don't start from scratch
2/ Prompt engineering: Craft effective prompts to optimize LLM performance without model modifications
3/ Implement Modern AI Solution Architectures: Design systems like RAG to enhance LLMs with external knowledge
Developers: The barrier to entry is lower than ever.
Focus on the solution's VALUE and connect AI components like you were assembling Lego! (Credits: Unknown)
This is how:
1/ Leveraging pre-trained LLMs: Select and tune existing LLMs for specific tasks. Don't start from scratch
2/ Prompt engineering: Craft effective prompts to optimize LLM performance without model modifications
3/ Implement Modern AI Solution Architectures: Design systems like RAG to enhance LLMs with external knowledge
Developers: The barrier to entry is lower than ever.
Focus on the solution's VALUE and connect AI components like you were assembling Lego! (Credits: Unknown)
β€10π₯4
15 Best Project Ideas for Data Science : π
π Beginner Level:
1. Exploratory Data Analysis (EDA) on Titanic Dataset
2. Netflix Movies/TV Shows Data Analysis
3. COVID-19 Data Visualization Dashboard
4. Sales Data Analysis (CSV/Excel)
5. Student Performance Analysis
π Intermediate Level:
6. Sentiment Analysis on Tweets
7. Customer Segmentation using K-Means
8. Credit Score Classification
9. House Price Prediction
10. Market Basket Analysis (Apriori Algorithm)
π Advanced Level:
11. Time Series Forecasting (Stock/Weather Data)
12. Fake News Detection using NLP
13. Image Classification with CNN
14. Resume Parser using NLP
15. Customer Churn Prediction
Credits: https://whatsapp.com/channel/0029VaxbzNFCxoAmYgiGTL3Z
π Beginner Level:
1. Exploratory Data Analysis (EDA) on Titanic Dataset
2. Netflix Movies/TV Shows Data Analysis
3. COVID-19 Data Visualization Dashboard
4. Sales Data Analysis (CSV/Excel)
5. Student Performance Analysis
π Intermediate Level:
6. Sentiment Analysis on Tweets
7. Customer Segmentation using K-Means
8. Credit Score Classification
9. House Price Prediction
10. Market Basket Analysis (Apriori Algorithm)
π Advanced Level:
11. Time Series Forecasting (Stock/Weather Data)
12. Fake News Detection using NLP
13. Image Classification with CNN
14. Resume Parser using NLP
15. Customer Churn Prediction
Credits: https://whatsapp.com/channel/0029VaxbzNFCxoAmYgiGTL3Z
β€4
Important Topics to become a data scientist
[Advanced Level]
ππ
1. Mathematics
Linear Algebra
Analytic Geometry
Matrix
Vector Calculus
Optimization
Regression
Dimensionality Reduction
Density Estimation
Classification
2. Probability
Introduction to Probability
1D Random Variable
The function of One Random Variable
Joint Probability Distribution
Discrete Distribution
Normal Distribution
3. Statistics
Introduction to Statistics
Data Description
Random Samples
Sampling Distribution
Parameter Estimation
Hypotheses Testing
Regression
4. Programming
Python:
Python Basics
List
Set
Tuples
Dictionary
Function
NumPy
Pandas
Matplotlib/Seaborn
R Programming:
R Basics
Vector
List
Data Frame
Matrix
Array
Function
dplyr
ggplot2
Tidyr
Shiny
DataBase:
SQL
MongoDB
Data Structures
Web scraping
Linux
Git
5. Machine Learning
How Model Works
Basic Data Exploration
First ML Model
Model Validation
Underfitting & Overfitting
Random Forest
Handling Missing Values
Handling Categorical Variables
Pipelines
Cross-Validation(R)
XGBoost(Python|R)
Data Leakage
6. Deep Learning
Artificial Neural Network
Convolutional Neural Network
Recurrent Neural Network
TensorFlow
Keras
PyTorch
A Single Neuron
Deep Neural Network
Stochastic Gradient Descent
Overfitting and Underfitting
Dropout Batch Normalization
Binary Classification
7. Feature Engineering
Baseline Model
Categorical Encodings
Feature Generation
Feature Selection
8. Natural Language Processing
Text Classification
Word Vectors
9. Data Visualization Tools
BI (Business Intelligence):
Tableau
Power BI
Qlik View
Qlik Sense
10. Deployment
Microsoft Azure
Heroku
Google Cloud Platform
Flask
Django
Like if you need similar content ππ
[Advanced Level]
ππ
1. Mathematics
Linear Algebra
Analytic Geometry
Matrix
Vector Calculus
Optimization
Regression
Dimensionality Reduction
Density Estimation
Classification
2. Probability
Introduction to Probability
1D Random Variable
The function of One Random Variable
Joint Probability Distribution
Discrete Distribution
Normal Distribution
3. Statistics
Introduction to Statistics
Data Description
Random Samples
Sampling Distribution
Parameter Estimation
Hypotheses Testing
Regression
4. Programming
Python:
Python Basics
List
Set
Tuples
Dictionary
Function
NumPy
Pandas
Matplotlib/Seaborn
R Programming:
R Basics
Vector
List
Data Frame
Matrix
Array
Function
dplyr
ggplot2
Tidyr
Shiny
DataBase:
SQL
MongoDB
Data Structures
Web scraping
Linux
Git
5. Machine Learning
How Model Works
Basic Data Exploration
First ML Model
Model Validation
Underfitting & Overfitting
Random Forest
Handling Missing Values
Handling Categorical Variables
Pipelines
Cross-Validation(R)
XGBoost(Python|R)
Data Leakage
6. Deep Learning
Artificial Neural Network
Convolutional Neural Network
Recurrent Neural Network
TensorFlow
Keras
PyTorch
A Single Neuron
Deep Neural Network
Stochastic Gradient Descent
Overfitting and Underfitting
Dropout Batch Normalization
Binary Classification
7. Feature Engineering
Baseline Model
Categorical Encodings
Feature Generation
Feature Selection
8. Natural Language Processing
Text Classification
Word Vectors
9. Data Visualization Tools
BI (Business Intelligence):
Tableau
Power BI
Qlik View
Qlik Sense
10. Deployment
Microsoft Azure
Heroku
Google Cloud Platform
Flask
Django
Like if you need similar content ππ
β€5
What does AI stand for?
Anonymous Quiz
1%
A) Automated Interface
97%
B) Artificial Intelligence
1%
C) Advanced Internet
β€1
Which AI subset involves machines learning from data?
Anonymous Quiz
7%
A) Robotics
84%
B) Machine Learning
10%
C) Computer Vision
β€4