Artificial Intelligence
46.9K subscribers
466 photos
2 videos
123 files
390 links
πŸ”° Machine Learning & Artificial Intelligence Free Resources

πŸ”° Learn Data Science, Deep Learning, Python with Tensorflow, Keras & many more

For Promotions: @love_data
Download Telegram
Data Science Cheatsheet πŸ’ͺ
❀8
Top 5 Case Studies for Data Analytics: You Must Know Before Attending an Interview



1. Retail: Target's Predictive Analytics for Customer Behavior
Company: Target
Challenge: Target wanted to identify customers who were expecting a baby to send them personalized promotions.
Solution:
Target used predictive analytics to analyze customers' purchase history and identify patterns that indicated pregnancy.
They tracked purchases of items like unscented lotion, vitamins, and cotton balls.
Outcome:
The algorithm successfully identified pregnant customers, enabling Target to send them relevant promotions.
This personalized marketing strategy increased sales and customer loyalty.

2. Healthcare: IBM Watson's Oncology Treatment Recommendations
Company: IBM Watson
Challenge: Oncologists needed support in identifying the best treatment options for cancer patients.
Solution:
IBM Watson analyzed vast amounts of medical data, including patient records, clinical trials, and medical literature.
It provided oncologists with evidencebased treatment recommendations tailored to individual patients.
Outcome:
Improved treatment accuracy and personalized care for cancer patients.
Reduced time for doctors to develop treatment plans, allowing them to focus more on patient care.

3. Finance: JP Morgan Chase's Fraud Detection System
Company: JP Morgan Chase
Challenge: The bank needed to detect and prevent fraudulent transactions in realtime.
Solution:
Implemented advanced machine learning algorithms to analyze transaction patterns and detect anomalies.
The system flagged suspicious transactions for further investigation.
Outcome:
Significantly reduced fraudulent activities.
Enhanced customer trust and satisfaction due to improved security measures.

4. Sports: Oakland Athletics' Use of Sabermetrics
Team: Oakland Athletics (Moneyball)
Challenge: Compete with larger teams with higher budgets by optimizing player performance and team strategy.
Solution:
Used sabermetrics, a form of advanced statistical analysis, to evaluate player performance and potential.
Focused on undervalued players with high onbase percentages and other key metrics.
Outcome:
Achieved remarkable success with a limited budget.
Revolutionized the approach to team building and player evaluation in baseball and other sports.

5. Ecommerce: Amazon's Recommendation Engine
Company: Amazon
Challenge: Enhance customer shopping experience and increase sales through personalized recommendations.
Solution:
Implemented a recommendation engine using collaborative filtering, which analyzes user behavior and purchase history.
The system suggests products based on what similar users have bought.
Outcome:
Increased average order value and customer retention.
Significantly contributed to Amazon's revenue growth through crossselling and upselling.
❀4
✈️ Top 7 Prompts to Book Flights Like a Travel Hacker

🌍 Hidden Fare Hunter
Prompt:
"I want to fly from [insert origin city/airport] to [insert destination] around [insert date range]. Act like a flight pricing analyst and tell me the cheapest time frame (days & hours) to book this route based on airline pricing patterns and historical trends."

πŸ’Έ Flexible Dates Price Hack
Prompt:
"I want to fly from [insert city] to [insert destination] within [insert month]. Act like a travel hacker.
Compare prices for all days in that month and tell me which exact dates are cheapest to depart and return, and why."

🧠 Nearby Airport Trick
Prompt:
"I'm traveling from [insert city] to [insert destination]. Act like a budget travel expert. Suggest nearby airports within 100 km from both my origin and destination that might have cheaper flights, and tell me how much I could save."

πŸ•΅οΈβ€β™‚οΈ Hidden-City Ticketing Strategy
Prompt
:
"I want to fly from [insert origin] to [insert destination]. Act like a hidden-city ticketing expert. Suggest routes where my destination is a layover on a longer flight, making it cheaper. Warn me about any risks like checked baggage issues."

🎯 Airline Sweet Spot Finder
Prompt
:
"I'm planning a trip from [insert origin] to [insert destination]. Act like a travel trends analyst. Tell me the cheapest months to fly this route and which airlines typically offer the lowest fares, based on past data."

🧳 Mistake Fare Hunter
Prompt:
"I'm looking for dirt-cheap or mistake fares from [insert city/region] to anywhere in [insert continent/region]. Act like a flight deal hunter and list websites, forums, and alert services I should monitor to catch these rare deals."

πŸ’Έ Currency & Region Pricing Loophole
Prompt:
"I want to book a flight from [insert city] to [insert destination]. Act like an advanced flight hacker. Tell me if booking this ticket in a different currency or from another country's version of the airline website could make it cheaper, and how to do it safely."
❀6πŸ‘1
Top 5 Clustering Techniques in Data Science
❀7πŸ‘1
Essential Skills to Master for Using Generative AI

1️⃣ Prompt Engineering
✍️ Learn how to craft clear, detailed prompts to get accurate AI-generated results.

2️⃣ Data Literacy
πŸ“Š Understand data sources, biases, and how AI models process information.

3️⃣ AI Ethics & Responsible Usage
βš–οΈ Know the ethical implications of AI, including bias, misinformation, and copyright issues.

4️⃣ Creativity & Critical Thinking
πŸ’‘ AI enhances creativity, but human intuition is key for quality content.

5️⃣ AI Tool Familiarity
πŸ” Get hands-on experience with tools like ChatGPT, DALLΒ·E, Midjourney, and Runway ML.

6️⃣ Coding Basics (Optional)
πŸ’» Knowing Python, SQL, or APIs helps customize AI workflows and automation.

7️⃣ Business & Marketing Awareness
πŸ“’ Leverage AI for automation, branding, and customer engagement.

8️⃣ Cybersecurity & Privacy Knowledge
πŸ” Learn how AI-generated data can be misused and ways to protect sensitive information.

9️⃣ Adaptability & Continuous Learning
πŸš€ AI evolves fastβ€”stay updated with new trends, tools, and regulations.

Master these skills to make the most of AI in your personal and professional life! πŸ”₯

Free Generative AI Resources: https://whatsapp.com/channel/0029VazaRBY2UPBNj1aCrN0U
❀7πŸ”₯1
K-Fold Cross Validation - Clearly Explained
❀6
Python Detailed Roadmap πŸš€

πŸ“Œ 1. Basics
β—Ό Data Types & Variables
β—Ό Operators & Expressions
β—Ό Control Flow (if, loops)

πŸ“Œ 2. Functions & Modules
β—Ό Defining Functions
β—Ό Lambda Functions
β—Ό Importing & Creating Modules

πŸ“Œ 3. File Handling
β—Ό Reading & Writing Files
β—Ό Working with CSV & JSON

πŸ“Œ 4. Object-Oriented Programming (OOP)
β—Ό Classes & Objects
β—Ό Inheritance & Polymorphism
β—Ό Encapsulation

πŸ“Œ 5. Exception Handling
β—Ό Try-Except Blocks
β—Ό Custom Exceptions

πŸ“Œ 6. Advanced Python Concepts
β—Ό List & Dictionary Comprehensions
β—Ό Generators & Iterators
β—Ό Decorators

πŸ“Œ 7. Essential Libraries
β—Ό NumPy (Arrays & Computations)
β—Ό Pandas (Data Analysis)
β—Ό Matplotlib & Seaborn (Visualization)

πŸ“Œ 8. Web Development & APIs
β—Ό Web Scraping (BeautifulSoup, Scrapy)
β—Ό API Integration (Requests)
β—Ό Flask & Django (Backend Development)

πŸ“Œ 9. Automation & Scripting
β—Ό Automating Tasks with Python
β—Ό Working with Selenium & PyAutoGUI

πŸ“Œ 10. Data Science & Machine Learning
β—Ό Data Cleaning & Preprocessing
β—Ό Scikit-Learn (ML Algorithms)
β—Ό TensorFlow & PyTorch (Deep Learning)

πŸ“Œ 11. Projects
β—Ό Build Real-World Applications
β—Ό Showcase on GitHub

πŸ“Œ 12. βœ… Apply for Jobs
β—Ό Strengthen Resume & Portfolio
β—Ό Prepare for Technical Interviews

Like for more ❀️πŸ’ͺ
❀10πŸ”₯2πŸ₯°1
Here is the list of few projects (found on kaggle). They cover Basics of Python, Advanced Statistics, Supervised Learning (Regression and Classification problems) & Data Science

Please also check the discussions and notebook submissions for different approaches and solution after you tried yourself.

1. Basic python and statistics

Pima Indians :- https://www.kaggle.com/uciml/pima-indians-diabetes-database
Cardio Goodness fit :- https://www.kaggle.com/saurav9786/cardiogoodfitness
Automobile :- https://www.kaggle.com/toramky/automobile-dataset

2. Advanced Statistics

Game of Thrones:-https://www.kaggle.com/mylesoneill/game-of-thrones
World University Ranking:-https://www.kaggle.com/mylesoneill/world-university-rankings
IMDB Movie Dataset:- https://www.kaggle.com/carolzhangdc/imdb-5000-movie-dataset

3. Supervised Learning

a) Regression Problems

How much did it rain :- https://www.kaggle.com/c/how-much-did-it-rain-ii/overview
Inventory Demand:- https://www.kaggle.com/c/grupo-bimbo-inventory-demand
Property Inspection predictiion:- https://www.kaggle.com/c/liberty-mutual-group-property-inspection-prediction
Restaurant Revenue prediction:- https://www.kaggle.com/c/restaurant-revenue-prediction/data
IMDB Box office Prediction:-https://www.kaggle.com/c/tmdb-box-office-prediction/overview

b) Classification problems

Employee Access challenge :- https://www.kaggle.com/c/amazon-employee-access-challenge/overview
Titanic :- https://www.kaggle.com/c/titanic
San Francisco crime:- https://www.kaggle.com/c/sf-crime
Customer satisfcation:-https://www.kaggle.com/c/santander-customer-satisfaction
Trip type classification:- https://www.kaggle.com/c/walmart-recruiting-trip-type-classification
Categorize cusine:- https://www.kaggle.com/c/whats-cooking

4. Some helpful Data science projects for beginners

https://www.kaggle.com/c/house-prices-advanced-regression-techniques

https://www.kaggle.com/c/digit-recognizer

https://www.kaggle.com/c/titanic

5. Intermediate Level Data science Projects

Black Friday Data : https://www.kaggle.com/sdolezel/black-friday

Human Activity Recognition Data : https://www.kaggle.com/uciml/human-activity-recognition-with-smartphones

Trip History Data : https://www.kaggle.com/pronto/cycle-share-dataset

Million Song Data : https://www.kaggle.com/c/msdchallenge

Census Income Data : https://www.kaggle.com/c/census-income/data

Movie Lens Data : https://www.kaggle.com/grouplens/movielens-20m-dataset

Twitter Classification Data : https://www.kaggle.com/c/twitter-sentiment-analysis2

Share with credits: https://t.iss.one/sqlproject

ENJOY LEARNING πŸ‘πŸ‘
❀3
Artificial Intelligence (AI) Roadmap
|
|-- Fundamentals
| |-- Mathematics
| | |-- Linear Algebra
| | |-- Calculus
| | |-- Probability and Statistics
| |
| |-- Programming
| | |-- Python (Focus on Libraries like NumPy, Pandas)
| | |-- Java or C++ (optional but useful)
| |
| |-- Algorithms and Data Structures
| | |-- Graphs and Trees
| | |-- Dynamic Programming
| | |-- Search Algorithms (e.g., A*, Minimax)
|
|-- Core AI Concepts
| |-- Knowledge Representation
| |-- Search Methods (DFS, BFS)
| |-- Constraint Satisfaction Problems
| |-- Logical Reasoning
|
|-- Machine Learning (ML)
| |-- Supervised Learning (Regression, Classification)
| |-- Unsupervised Learning (Clustering, Dimensionality Reduction)
| |-- Reinforcement Learning (Q-Learning, Policy Gradient Methods)
| |-- Ensemble Methods (Random Forest, Gradient Boosting)
|
|-- Deep Learning (DL)
| |-- Neural Networks
| |-- Convolutional Neural Networks (CNNs)
| |-- Recurrent Neural Networks (RNNs)
| |-- Transformers (BERT, GPT)
| |-- Frameworks (TensorFlow, PyTorch)
|
|-- Natural Language Processing (NLP)
| |-- Text Preprocessing (Tokenization, Lemmatization)
| |-- NLP Models (Word2Vec, BERT)
| |-- Applications (Chatbots, Sentiment Analysis, NER)
|
|-- Computer Vision
| |-- Image Processing
| |-- Object Detection (YOLO, SSD)
| |-- Image Segmentation
| |-- Applications (Facial Recognition, OCR)
|
|-- Ethical AI
| |-- Fairness and Bias
| |-- Privacy and Security
| |-- Explainability (SHAP, LIME)
|
|-- Applications of AI
| |-- Healthcare (Diagnostics, Personalized Medicine)
| |-- Finance (Fraud Detection, Algorithmic Trading)
| |-- Retail (Recommendation Systems, Inventory Management)
| |-- Autonomous Vehicles (Perception, Control Systems)
|
|-- AI Deployment
| |-- Model Serving (Flask, FastAPI)
| |-- Cloud Platforms (AWS SageMaker, Google AI)
| |-- Edge AI (TensorFlow Lite, ONNX)
|
|-- Advanced Topics
| |-- Multi-Agent Systems
| |-- Generative Models (GANs, VAEs)
| |-- Knowledge Graphs
| |-- AI in Quantum Computing

Best Resources to learn ML & AI πŸ‘‡

Learn Python for Free

Prompt Engineering Course

Prompt Engineering Guide

Data Science Course

Google Cloud Generative AI Path

Machine Learning with Python Free Course

Machine Learning Free Book

Artificial Intelligence WhatsApp channel

Hands-on Machine Learning

Deep Learning Nanodegree Program with Real-world Projects

AI, Machine Learning and Deep Learning

Like this post for more roadmaps ❀️

Follow & share the channel link with your friends: t.iss.one/free4unow_backup

ENJOY LEARNINGπŸ‘πŸ‘
❀12
If I Were to Start My Data Science Career from Scratch, Here's What I Would Do πŸ‘‡

1️⃣ Master Advanced SQL

Foundations: Learn database structures, tables, and relationships.

Basic SQL Commands: SELECT, FROM, WHERE, ORDER BY.

Aggregations: Get hands-on with SUM, COUNT, AVG, MIN, MAX, GROUP BY, and HAVING.

JOINs: Understand LEFT, RIGHT, INNER, OUTER, and CARTESIAN joins.

Advanced Concepts: CTEs, window functions, and query optimization.

Metric Development: Build and report metrics effectively.


2️⃣ Study Statistics & A/B Testing

Descriptive Statistics: Know your mean, median, mode, and standard deviation.

Distributions: Familiarize yourself with normal, Bernoulli, binomial, exponential, and uniform distributions.

Probability: Understand basic probability and Bayes' theorem.

Intro to ML: Start with linear regression, decision trees, and K-means clustering.

Experimentation Basics: T-tests, Z-tests, Type 1 & Type 2 errors.

A/B Testing: Design experimentsβ€”hypothesis formation, sample size calculation, and sample biases.


3️⃣ Learn Python for Data

Data Manipulation: Use pandas for data cleaning and manipulation.

Data Visualization: Explore matplotlib and seaborn for creating visualizations.

Hypothesis Testing: Dive into scipy for statistical testing.

Basic Modeling: Practice building models with scikit-learn.


4️⃣ Develop Product Sense

Product Management Basics: Manage projects and understand the product life cycle.

Data-Driven Strategy: Leverage data to inform decisions and measure success.

Metrics in Business: Define and evaluate metrics that matter to the business.


5️⃣ Hone Soft Skills

Communication: Clearly explain data findings to technical and non-technical audiences.

Collaboration: Work effectively in teams.

Time Management: Prioritize and manage projects efficiently.

Self-Reflection: Regularly assess and improve your skills.


6️⃣ Bonus: Basic Data Engineering

Data Modeling: Understand dimensional modeling and trade-offs in normalization vs. denormalization.

ETL: Set up extraction jobs, manage dependencies, clean and validate data.

Pipeline Testing: Conduct unit testing and ensure data quality throughout the pipeline.

I have curated the best interview resources to crack Data Science Interviews
πŸ‘‡πŸ‘‡
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

Like if you need similar content πŸ˜„πŸ‘
❀2
πŸ”° How to become a data scientist in 2025?

πŸ‘¨πŸ»β€πŸ’» If you want to become a data science professional, follow this path! I've prepared a complete roadmap with the best free resources where you can learn the essential skills in this field.


πŸ”’ Step 1: Strengthen your math and statistics!

✏️ The foundation of learning data science is mathematics, linear algebra, statistics, and probability. Topics you should master:

βœ… Linear algebra: matrices, vectors, eigenvalues.

πŸ”— Course: MIT 18.06 Linear Algebra


βœ… Calculus: derivative, integral, optimization.

πŸ”— Course: MIT Single Variable Calculus


βœ… Statistics and probability: Bayes' theorem, hypothesis testing.

πŸ”— Course: Statistics 110

βž–βž–βž–βž–βž–

πŸ”’ Step 2: Learn to code.

✏️ Learn Python and become proficient in coding. The most important topics you need to master are:

βœ… Python: Pandas, NumPy, Matplotlib libraries

πŸ”— Course: FreeCodeCamp Python Course

βœ… SQL language: Join commands, Window functions, query optimization.

πŸ”— Course: Stanford SQL Course

βœ… Data structures and algorithms: arrays, linked lists, trees.

πŸ”— Course: MIT Introduction to Algorithms

βž–βž–βž–βž–βž–

πŸ”’ Step 3: Clean and visualize data

✏️ Learn how to process and clean data and then create an engaging story from it!

βœ… Data cleaning: Working with missing values ​​and detecting outliers.

πŸ”— Course: Data Cleaning

βœ… Data visualization: Matplotlib, Seaborn, Tableau

πŸ”— Course: Data Visualization Tutorial

βž–βž–βž–βž–βž–

πŸ”’ Step 4: Learn Machine Learning

✏️ It's time to enter the exciting world of machine learning! You should know these topics:

βœ… Supervised learning: regression, classification.

βœ… Unsupervised learning: clustering, PCA, anomaly detection.

βœ… Deep learning: neural networks, CNN, RNN


πŸ”— Course: CS229: Machine Learning

βž–βž–βž–βž–βž–

πŸ”’
Step 5: Working with Big Data and Cloud Technologies

✏️ If you're going to work in the real world, you need to know how to work with Big Data and cloud computing.

βœ… Big Data Tools: Hadoop, Spark, Dask

βœ… Cloud platforms: AWS, GCP, Azure

πŸ”— Course: Data Engineering

βž–βž–βž–βž–βž–

πŸ”’ Step 6: Do real projects!

✏️ Enough theory, it's time to get coding! Do real projects and build a strong portfolio.

βœ… Kaggle competitions: solving real-world challenges.

βœ… End-to-End projects: data collection, modeling, implementation.

βœ… GitHub: Publish your projects on GitHub.

πŸ”— Platform: KaggleπŸ”— Platform: ods.ai

βž–βž–βž–βž–βž–

πŸ”’ Step 7: Learn MLOps and deploy models

✏️ Machine learning is not just about building a model! You need to learn how to deploy and monitor a model.

βœ… MLOps training: model versioning, monitoring, model retraining.

βœ… Deployment models: Flask, FastAPI, Docker

πŸ”— Course: Stanford MLOps Course

βž–βž–βž–βž–βž–

πŸ”’ Step 8: Stay up to date and network

✏️ Data science is changing every day, so it is necessary to update yourself every day and stay in regular contact with experienced people and experts in this field.

βœ… Read scientific articles: arXiv, Google Scholar

βœ… Connect with the data community:

πŸ”— Site: Papers with code
πŸ”— Site: AI Research at Google


#ArtificialIntelligence #AI #MachineLearning #LargeLanguageModels #LLMs #DeepLearning #NLP #NaturalLanguageProcessing #AIResearch #TechBooks #AIApplications #DataScience #FutureOfAI #AIEducation #LearnAI #TechInnovation #AIethics #GPT #BERT #T5 #AIBook #data
❀9πŸ₯°1
For those of you who are new to Neural Networks, let me try to give you a brief overview.

Neural networks are computational models inspired by the human brain's structure and function. They consist of interconnected layers of nodes (or neurons) that process data and learn patterns. Here's a brief overview:

1. Structure: Neural networks have three main types of layers:
- Input layer: Receives the initial data.
- Hidden layers: Intermediate layers that process the input data through weighted connections.
- Output layer: Produces the final output or prediction.

2. Neurons and Connections: Each neuron receives input from several other neurons, processes this input through a weighted sum, and applies an activation function to determine the output. This output is then passed to the neurons in the next layer.

3. Training: Neural networks learn by adjusting the weights of the connections between neurons using a process called backpropagation, which involves:
- Forward pass: Calculating the output based on current weights.
- Loss calculation: Comparing the output to the actual result using a loss function.
- Backward pass: Adjusting the weights to minimize the loss using optimization algorithms like gradient descent.

4. Activation Functions: Functions like ReLU, Sigmoid, or Tanh are used to introduce non-linearity into the network, enabling it to learn complex patterns.

5. Applications: Neural networks are used in various fields, including image and speech recognition, natural language processing, and game playing, among others.

Overall, neural networks are powerful tools for modeling and solving complex problems by learning from data.

30 Days of Data Science: https://t.iss.one/datasciencefun/1704

Like if you want me to continue data science series πŸ˜„β€οΈ

ENJOY LEARNING πŸ‘πŸ‘
❀5πŸ₯°1
Coding Project Ideas with AI πŸ‘‡πŸ‘‡

1. Sentiment Analysis Tool: Develop a tool that uses AI to analyze the sentiment of text data, such as social media posts, customer reviews, or news articles. The tool could classify the sentiment as positive, negative, or neutral.

2. Image Recognition App: Create an app that uses AI image recognition algorithms to identify objects, scenes, or people in images. This could be useful for applications like automatic photo tagging or security surveillance.

3. Chatbot Development: Build a chatbot using AI natural language processing techniques to interact with users and provide information or assistance on a specific topic. You could integrate the chatbot into a website or messaging platform.

4. Recommendation System: Develop a recommendation system that uses AI algorithms to suggest products, movies, music, or other items based on user preferences and behavior. This could enhance the user experience on e-commerce platforms or streaming services.

5. Fraud Detection System: Create a fraud detection system that uses AI to analyze patterns and anomalies in financial transactions data. The system could help identify potentially fraudulent activities and prevent financial losses.

6. Health Monitoring App: Build an app that uses AI to monitor health data, such as heart rate, sleep patterns, or activity levels, and provide personalized recommendations for improving health and wellness.

7. Language Translation Tool: Develop a language translation tool that uses AI machine translation algorithms to translate text between different languages accurately and efficiently.

8. Autonomous Driving System: Work on a project to develop an autonomous driving system that uses AI computer vision and sensor data processing to navigate vehicles safely and efficiently on roads.

9. Personalized Content Generator: Create a tool that uses AI natural language generation techniques to generate personalized content, such as articles, emails, or marketing messages tailored to individual preferences.

10. Music Recommendation Engine: Build a music recommendation engine that uses AI algorithms to analyze music preferences and suggest playlists or songs based on user tastes and listening habits.

Join for more: https://t.iss.one/Programming_experts

ENJOY LEARNING πŸ‘πŸ‘
❀5