Artificial Intelligence
46.9K subscribers
466 photos
2 videos
123 files
390 links
πŸ”° Machine Learning & Artificial Intelligence Free Resources

πŸ”° Learn Data Science, Deep Learning, Python with Tensorflow, Keras & many more

For Promotions: @love_data
Download Telegram
Artificial Intelligence on WhatsApp πŸš€

Top AI Channels on WhatsApp!


1. ChatGPT – Your go-to AI for anything and everything. https://whatsapp.com/channel/0029VapThS265yDAfwe97c23

2. OpenAI – Your gateway to cutting-edge artificial intelligence innovation. https://whatsapp.com/channel/0029VbAbfqcLtOj7Zen5tt3o

3. Microsoft Copilot – Your productivity powerhouse. https://whatsapp.com/channel/0029VbAW0QBDOQIgYcbwBd1l

4. Perplexity AI – Your AI-powered research buddy with real-time answers. https://whatsapp.com/channel/0029VbAa05yISTkGgBqyC00U

5. Generative AI – Your creative partner for text, images, code, and more. https://whatsapp.com/channel/0029VazaRBY2UPBNj1aCrN0U

6. Prompt Engineering – Your secret weapon to get the best out of AI. https://whatsapp.com/channel/0029Vb6ISO1Fsn0kEemhE03b

7. AI Tools – Your toolkit for automating, analyzing, and accelerating everything. https://whatsapp.com/channel/0029VaojSv9LCoX0gBZUxX3B

8. AI Studio – Everything about AI & Tech https://whatsapp.com/channel/0029VbAWNue1iUxjLo2DFx2U

9. Google Gemini – Generate images & videos with AI. https://whatsapp.com/channel/0029Vb5Q4ly3mFY3Jz7qIu3i/103

10. Data Science & Machine Learning – Your fuel for insights, predictions, and smarter decisions. https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

11. Data Science Projects – Your engine for building smarter, self-learning systems. https://whatsapp.com/channel/0029VaxbzNFCxoAmYgiGTL3Z/208

React ❀️ for more
❀8
SQL Joins βœ…
❀7
Are you looking to become a machine learning engineer? The algorithm brought you to the right place! πŸ“Œ

I created a free and comprehensive roadmap. Let's go through this thread and explore what you need to know to become an expert machine learning engineer:

Math & Statistics

Just like most other data roles, machine learning engineering starts with strong foundations from math, precisely linear algebra, probability and statistics.

Here are the probability units you will need to focus on:

Basic probability concepts statistics
Inferential statistics
Regression analysis
Experimental design and A/B testing Bayesian statistics
Calculus
Linear algebra

Python:

You can choose Python, R, Julia, or any other language, but Python is the most versatile and flexible language for machine learning.

Variables, data types, and basic operations
Control flow statements (e.g., if-else, loops)
Functions and modules
Error handling and exceptions
Basic data structures (e.g., lists, dictionaries, tuples)
Object-oriented programming concepts
Basic work with APIs
Detailed data structures and algorithmic thinking

Machine Learning Prerequisites:

Exploratory Data Analysis (EDA) with NumPy and Pandas
Basic data visualization techniques to visualize the variables and features.
Feature extraction
Feature engineering
Different types of encoding data

Machine Learning Fundamentals

Using scikit-learn library in combination with other Python libraries for:

Supervised Learning: (Linear Regression, K-Nearest Neighbors, Decision Trees)
Unsupervised Learning: (K-Means Clustering, Principal Component Analysis, Hierarchical Clustering)
Reinforcement Learning: (Q-Learning, Deep Q Network, Policy Gradients)

Solving two types of problems:
Regression
Classification

Neural Networks:
Neural networks are like computer brains that learn from examples, made up of layers of "neurons" that handle data. They learn without explicit instructions.

Types of Neural Networks:

Feedforward Neural Networks: Simplest form, with straight connections and no loops.
Convolutional Neural Networks (CNNs): Great for images, learning visual patterns.
Recurrent Neural Networks (RNNs): Good for sequences like text or time series, because they remember past information.

In Python, it’s the best to use TensorFlow and Keras libraries, as well as PyTorch, for deeper and more complex neural network systems.

Deep Learning:

Deep learning is a subset of machine learning in artificial intelligence (AI) that has networks capable of learning unsupervised from data that is unstructured or unlabeled.

Convolutional Neural Networks (CNNs)
Recurrent Neural Networks (RNNs)
Long Short-Term Memory Networks (LSTMs)
Generative Adversarial Networks (GANs)
Autoencoders
Deep Belief Networks (DBNs)
Transformer Models

Machine Learning Project Deployment

Machine learning engineers should also be able to dive into MLOps and project deployment. Here are the things that you should be familiar or skilled at:

Version Control for Data and Models
Automated Testing and Continuous Integration (CI)
Continuous Delivery and Deployment (CD)
Monitoring and Logging
Experiment Tracking and Management
Feature Stores
Data Pipeline and Workflow Orchestration
Infrastructure as Code (IaC)
Model Serving and APIs

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://t.iss.one/datasciencefun

Like if you need similar content πŸ˜„πŸ‘

Hope this helps you 😊
❀8πŸ”₯1
Neural Networks and Deep Learning
Neural networks and deep learning are integral parts of artificial intelligence (AI) and machine learning (ML). Here's an overview:

1.Neural Networks: Neural networks are computational models inspired by the human brain's structure and functioning. They consist of interconnected nodes (neurons) organized in layers: input layer, hidden layers, and output layer.

Each neuron receives input, processes it through an activation function, and passes the output to the next layer. Neurons in subsequent layers perform more complex computations based on previous layers' outputs.

Neural networks learn by adjusting weights and biases associated with connections between neurons through a process called training. This is typically done using optimization techniques like gradient descent and backpropagation.

2.Deep Learning : Deep learning is a subset of ML that uses neural networks with multiple layers (hence the term "deep"), allowing them to learn hierarchical representations of data.

These networks can automatically discover patterns, features, and representations in raw data, making them powerful for tasks like image recognition, natural language processing (NLP), speech recognition, and more.

Deep learning architectures such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Long Short-Term Memory networks (LSTMs), and Transformer models have demonstrated exceptional performance in various domains.

3.Applications Computer Vision: Object detection, image classification, facial recognition, etc., leveraging CNNs.

Natural Language Processing (NLP) Language translation, sentiment analysis, chatbots, etc., utilizing RNNs, LSTMs, and Transformers.
Speech Recognition: Speech-to-text systems using deep neural networks.

4.Challenges and Advancements: Training deep neural networks often requires large amounts of data and computational resources. Techniques like transfer learning, regularization, and optimization algorithms aim to address these challenges.

LAdvancements in hardware (GPUs, TPUs), algorithms (improved architectures like GANs - Generative Adversarial Networks), and techniques (attention mechanisms) have significantly contributed to the success of deep learning.

5. Frameworks and Libraries: There are various open-source libraries and frameworks (TensorFlow, PyTorch, Keras, etc.) that provide tools and APIs for building, training, and deploying neural networks and deep learning models.

Join for more: https://t.iss.one/machinelearning_deeplearning
❀5πŸ”₯1
Data Science Cheatsheet πŸ’ͺ
❀8
Top 5 Case Studies for Data Analytics: You Must Know Before Attending an Interview



1. Retail: Target's Predictive Analytics for Customer Behavior
Company: Target
Challenge: Target wanted to identify customers who were expecting a baby to send them personalized promotions.
Solution:
Target used predictive analytics to analyze customers' purchase history and identify patterns that indicated pregnancy.
They tracked purchases of items like unscented lotion, vitamins, and cotton balls.
Outcome:
The algorithm successfully identified pregnant customers, enabling Target to send them relevant promotions.
This personalized marketing strategy increased sales and customer loyalty.

2. Healthcare: IBM Watson's Oncology Treatment Recommendations
Company: IBM Watson
Challenge: Oncologists needed support in identifying the best treatment options for cancer patients.
Solution:
IBM Watson analyzed vast amounts of medical data, including patient records, clinical trials, and medical literature.
It provided oncologists with evidencebased treatment recommendations tailored to individual patients.
Outcome:
Improved treatment accuracy and personalized care for cancer patients.
Reduced time for doctors to develop treatment plans, allowing them to focus more on patient care.

3. Finance: JP Morgan Chase's Fraud Detection System
Company: JP Morgan Chase
Challenge: The bank needed to detect and prevent fraudulent transactions in realtime.
Solution:
Implemented advanced machine learning algorithms to analyze transaction patterns and detect anomalies.
The system flagged suspicious transactions for further investigation.
Outcome:
Significantly reduced fraudulent activities.
Enhanced customer trust and satisfaction due to improved security measures.

4. Sports: Oakland Athletics' Use of Sabermetrics
Team: Oakland Athletics (Moneyball)
Challenge: Compete with larger teams with higher budgets by optimizing player performance and team strategy.
Solution:
Used sabermetrics, a form of advanced statistical analysis, to evaluate player performance and potential.
Focused on undervalued players with high onbase percentages and other key metrics.
Outcome:
Achieved remarkable success with a limited budget.
Revolutionized the approach to team building and player evaluation in baseball and other sports.

5. Ecommerce: Amazon's Recommendation Engine
Company: Amazon
Challenge: Enhance customer shopping experience and increase sales through personalized recommendations.
Solution:
Implemented a recommendation engine using collaborative filtering, which analyzes user behavior and purchase history.
The system suggests products based on what similar users have bought.
Outcome:
Increased average order value and customer retention.
Significantly contributed to Amazon's revenue growth through crossselling and upselling.
❀4