Artificial Intelligence
46.9K subscribers
466 photos
2 videos
123 files
390 links
πŸ”° Machine Learning & Artificial Intelligence Free Resources

πŸ”° Learn Data Science, Deep Learning, Python with Tensorflow, Keras & many more

For Promotions: @love_data
Download Telegram
SQL Basics for Data Analysts

SQL (Structured Query Language) is used to retrieve, manipulate, and analyze data stored in databases.

1️⃣ Understanding Databases & Tables

Databases store structured data in tables.

Tables contain rows (records) and columns (fields).

Each column has a specific data type (INTEGER, VARCHAR, DATE, etc.).

2️⃣ Basic SQL Commands

Let's start with some fundamental queries:

πŸ”Ή SELECT – Retrieve Data

SELECT * FROM employees; -- Fetch all columns from 'employees' table SELECT name, salary FROM employees; -- Fetch specific columns 

πŸ”Ή WHERE – Filter Data

SELECT * FROM employees WHERE department = 'Sales'; -- Filter by department SELECT * FROM employees WHERE salary > 50000; -- Filter by salary 


πŸ”Ή ORDER BY – Sort Data

SELECT * FROM employees ORDER BY salary DESC; -- Sort by salary (highest first) SELECT name, hire_date FROM employees ORDER BY hire_date ASC; -- Sort by hire date (oldest first) 


πŸ”Ή LIMIT – Restrict Number of Results

SELECT * FROM employees LIMIT 5; -- Fetch only 5 rows SELECT * FROM employees WHERE department = 'HR' LIMIT 10; -- Fetch first 10 HR employees 


πŸ”Ή DISTINCT – Remove Duplicates

SELECT DISTINCT department FROM employees; -- Show unique departments 


Mini Task for You: Try to write an SQL query to fetch the top 3 highest-paid employees from an "employees" table.

You can find free SQL Resources here
πŸ‘‡πŸ‘‡
https://t.iss.one/mysqldata

Like this post if you want me to continue covering all the topics! πŸ‘β€οΈ

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)

#sql
❀3πŸ”₯1😁1
Statistics Roadmap for Data Science!

Phase 1: Fundamentals of Statistics

1️⃣ Basic Concepts
-Introduction to Statistics
-Types of Data
-Descriptive Statistics

2️⃣ Probability
-Basic Probability
-Conditional Probability
-Probability Distributions

Phase 2: Intermediate Statistics

3️⃣ Inferential Statistics
-Sampling and Sampling Distributions
-Hypothesis Testing
-Confidence Intervals

4️⃣ Regression Analysis
-Linear Regression
-Diagnostics and Validation

Phase 3: Advanced Topics

5️⃣ Advanced Probability and Statistics
-Advanced Probability Distributions
-Bayesian Statistics

6️⃣ Multivariate Statistics
-Principal Component Analysis (PCA)
-Clustering

Phase 4: Statistical Learning and Machine Learning

7️⃣ Statistical Learning
-Introduction to Statistical Learning
-Supervised Learning
-Unsupervised Learning

Phase 5: Practical Application

8️⃣ Tools and Software
-Statistical Software (R, Python)
-Data Visualization (Matplotlib, Seaborn, ggplot2)

9️⃣ Projects and Case Studies
-Capstone Project
-Case Studies

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

ENJOY LEARNING πŸ‘πŸ‘
❀6πŸ”₯1
Artificial Intelligence on WhatsApp πŸš€

Top AI Channels on WhatsApp!


1. ChatGPT – Your go-to AI for anything and everything. https://whatsapp.com/channel/0029VapThS265yDAfwe97c23

2. OpenAI – Your gateway to cutting-edge artificial intelligence innovation. https://whatsapp.com/channel/0029VbAbfqcLtOj7Zen5tt3o

3. Microsoft Copilot – Your productivity powerhouse. https://whatsapp.com/channel/0029VbAW0QBDOQIgYcbwBd1l

4. Perplexity AI – Your AI-powered research buddy with real-time answers. https://whatsapp.com/channel/0029VbAa05yISTkGgBqyC00U

5. Generative AI – Your creative partner for text, images, code, and more. https://whatsapp.com/channel/0029VazaRBY2UPBNj1aCrN0U

6. Prompt Engineering – Your secret weapon to get the best out of AI. https://whatsapp.com/channel/0029Vb6ISO1Fsn0kEemhE03b

7. AI Tools – Your toolkit for automating, analyzing, and accelerating everything. https://whatsapp.com/channel/0029VaojSv9LCoX0gBZUxX3B

8. AI Studio – Everything about AI & Tech https://whatsapp.com/channel/0029VbAWNue1iUxjLo2DFx2U

9. Google Gemini – Generate images & videos with AI. https://whatsapp.com/channel/0029Vb5Q4ly3mFY3Jz7qIu3i/103

10. Data Science & Machine Learning – Your fuel for insights, predictions, and smarter decisions. https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

11. Data Science Projects – Your engine for building smarter, self-learning systems. https://whatsapp.com/channel/0029VaxbzNFCxoAmYgiGTL3Z/208

React ❀️ for more
❀8
SQL Joins βœ…
❀7
Are you looking to become a machine learning engineer? The algorithm brought you to the right place! πŸ“Œ

I created a free and comprehensive roadmap. Let's go through this thread and explore what you need to know to become an expert machine learning engineer:

Math & Statistics

Just like most other data roles, machine learning engineering starts with strong foundations from math, precisely linear algebra, probability and statistics.

Here are the probability units you will need to focus on:

Basic probability concepts statistics
Inferential statistics
Regression analysis
Experimental design and A/B testing Bayesian statistics
Calculus
Linear algebra

Python:

You can choose Python, R, Julia, or any other language, but Python is the most versatile and flexible language for machine learning.

Variables, data types, and basic operations
Control flow statements (e.g., if-else, loops)
Functions and modules
Error handling and exceptions
Basic data structures (e.g., lists, dictionaries, tuples)
Object-oriented programming concepts
Basic work with APIs
Detailed data structures and algorithmic thinking

Machine Learning Prerequisites:

Exploratory Data Analysis (EDA) with NumPy and Pandas
Basic data visualization techniques to visualize the variables and features.
Feature extraction
Feature engineering
Different types of encoding data

Machine Learning Fundamentals

Using scikit-learn library in combination with other Python libraries for:

Supervised Learning: (Linear Regression, K-Nearest Neighbors, Decision Trees)
Unsupervised Learning: (K-Means Clustering, Principal Component Analysis, Hierarchical Clustering)
Reinforcement Learning: (Q-Learning, Deep Q Network, Policy Gradients)

Solving two types of problems:
Regression
Classification

Neural Networks:
Neural networks are like computer brains that learn from examples, made up of layers of "neurons" that handle data. They learn without explicit instructions.

Types of Neural Networks:

Feedforward Neural Networks: Simplest form, with straight connections and no loops.
Convolutional Neural Networks (CNNs): Great for images, learning visual patterns.
Recurrent Neural Networks (RNNs): Good for sequences like text or time series, because they remember past information.

In Python, it’s the best to use TensorFlow and Keras libraries, as well as PyTorch, for deeper and more complex neural network systems.

Deep Learning:

Deep learning is a subset of machine learning in artificial intelligence (AI) that has networks capable of learning unsupervised from data that is unstructured or unlabeled.

Convolutional Neural Networks (CNNs)
Recurrent Neural Networks (RNNs)
Long Short-Term Memory Networks (LSTMs)
Generative Adversarial Networks (GANs)
Autoencoders
Deep Belief Networks (DBNs)
Transformer Models

Machine Learning Project Deployment

Machine learning engineers should also be able to dive into MLOps and project deployment. Here are the things that you should be familiar or skilled at:

Version Control for Data and Models
Automated Testing and Continuous Integration (CI)
Continuous Delivery and Deployment (CD)
Monitoring and Logging
Experiment Tracking and Management
Feature Stores
Data Pipeline and Workflow Orchestration
Infrastructure as Code (IaC)
Model Serving and APIs

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://t.iss.one/datasciencefun

Like if you need similar content πŸ˜„πŸ‘

Hope this helps you 😊
❀8πŸ”₯1
Neural Networks and Deep Learning
Neural networks and deep learning are integral parts of artificial intelligence (AI) and machine learning (ML). Here's an overview:

1.Neural Networks: Neural networks are computational models inspired by the human brain's structure and functioning. They consist of interconnected nodes (neurons) organized in layers: input layer, hidden layers, and output layer.

Each neuron receives input, processes it through an activation function, and passes the output to the next layer. Neurons in subsequent layers perform more complex computations based on previous layers' outputs.

Neural networks learn by adjusting weights and biases associated with connections between neurons through a process called training. This is typically done using optimization techniques like gradient descent and backpropagation.

2.Deep Learning : Deep learning is a subset of ML that uses neural networks with multiple layers (hence the term "deep"), allowing them to learn hierarchical representations of data.

These networks can automatically discover patterns, features, and representations in raw data, making them powerful for tasks like image recognition, natural language processing (NLP), speech recognition, and more.

Deep learning architectures such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Long Short-Term Memory networks (LSTMs), and Transformer models have demonstrated exceptional performance in various domains.

3.Applications Computer Vision: Object detection, image classification, facial recognition, etc., leveraging CNNs.

Natural Language Processing (NLP) Language translation, sentiment analysis, chatbots, etc., utilizing RNNs, LSTMs, and Transformers.
Speech Recognition: Speech-to-text systems using deep neural networks.

4.Challenges and Advancements: Training deep neural networks often requires large amounts of data and computational resources. Techniques like transfer learning, regularization, and optimization algorithms aim to address these challenges.

LAdvancements in hardware (GPUs, TPUs), algorithms (improved architectures like GANs - Generative Adversarial Networks), and techniques (attention mechanisms) have significantly contributed to the success of deep learning.

5. Frameworks and Libraries: There are various open-source libraries and frameworks (TensorFlow, PyTorch, Keras, etc.) that provide tools and APIs for building, training, and deploying neural networks and deep learning models.

Join for more: https://t.iss.one/machinelearning_deeplearning
❀5πŸ”₯1
Data Science Cheatsheet πŸ’ͺ
❀8