5 Trending AI Jobs You Canโt Miss in 2025! ๐ค
๐ป *Machine Learning Engineer*
๐๐ป *Average Salary:* $114,000
๐๐ป *What They Do:* Design and implement ML algorithms while collaborating with data scientists and engineers. ๐
๐ *Data Scientist*
๐๐ป *Average Salary:* $120,000
๐๐ป *What They Do:* Analyze data, build predictive models, and drive data-backed decisions. ๐
๐ฌ *AI Research Scientist*
๐๐ป *Average Salary:* $126,000
๐๐ป *What They Do:* Explore the future of AI by testing algorithms and driving innovation. ๐
๐ค *AI Ethic*
๐๐ป *Average Salary:* $135,000
๐๐ป *What They Do:* Promote ethical AI development, address biases, and ensure fairness. ๐
๐ *AI Product Manager*
๐๐ป *Average Salary:* $140,000
๐๐ป *What They Do:* Manage AI products for success, focusing on innovation and ethical impact. ๐
๐ป *Machine Learning Engineer*
๐๐ป *Average Salary:* $114,000
๐๐ป *What They Do:* Design and implement ML algorithms while collaborating with data scientists and engineers. ๐
๐ *Data Scientist*
๐๐ป *Average Salary:* $120,000
๐๐ป *What They Do:* Analyze data, build predictive models, and drive data-backed decisions. ๐
๐ฌ *AI Research Scientist*
๐๐ป *Average Salary:* $126,000
๐๐ป *What They Do:* Explore the future of AI by testing algorithms and driving innovation. ๐
๐ค *AI Ethic*
๐๐ป *Average Salary:* $135,000
๐๐ป *What They Do:* Promote ethical AI development, address biases, and ensure fairness. ๐
๐ *AI Product Manager*
๐๐ป *Average Salary:* $140,000
๐๐ป *What They Do:* Manage AI products for success, focusing on innovation and ethical impact. ๐
๐6
Time Complexity of 10 Most Popular ML Algorithms
.
.
When selecting a machine learning model, understanding its time complexity is crucial for efficient processing, especially with large datasets.
For instance,
1๏ธโฃ Linear Regression (OLS) is computationally expensive due to matrix multiplication, making it less suitable for big data applications.
2๏ธโฃ Logistic Regression with Stochastic Gradient Descent (SGD) offers faster training times by updating parameters iteratively.
3๏ธโฃ Decision Trees and Random Forests are efficient for training but can be slower for prediction due to traversing the tree structure.
4๏ธโฃ K-Nearest Neighbours is simple but can become slow with large datasets due to distance calculations.
5๏ธโฃ Naive Bayes is fast and scalable, making it suitable for large datasets with high-dimensional features.
.
.
When selecting a machine learning model, understanding its time complexity is crucial for efficient processing, especially with large datasets.
For instance,
1๏ธโฃ Linear Regression (OLS) is computationally expensive due to matrix multiplication, making it less suitable for big data applications.
2๏ธโฃ Logistic Regression with Stochastic Gradient Descent (SGD) offers faster training times by updating parameters iteratively.
3๏ธโฃ Decision Trees and Random Forests are efficient for training but can be slower for prediction due to traversing the tree structure.
4๏ธโฃ K-Nearest Neighbours is simple but can become slow with large datasets due to distance calculations.
5๏ธโฃ Naive Bayes is fast and scalable, making it suitable for large datasets with high-dimensional features.
๐5
ยฉHow fresher can get a job as a data scientist?ยฉ
Job market is highly resistant to hire data scientist as a fresher. Everyone out there asks for at least 2 years of experience, but then the question is where will we get the two years experience from?
The important thing here to build a portfolio. As you are a fresher I would assume you had learnt data science through online courses. They only teach you the basics, the analytical skills required to clean the data and apply machine learning algorithms to them comes only from practice.
Do some real-world data science projects, participate in Kaggle competition. kaggle provides data sets for practice as well. Whatever projects you do, create a GitHub repository for it. Place all your projects there so when a recruiter is looking at your profile they know you have hands-on practice and do know the basics. This will take you a long way.
All the major data science jobs for freshers will only be available through off-campus interviews.
Some companies that hires data scientists are:
Siemens
Accenture
IBM
Cerner
Creating a technical portfolio will showcase the knowledge you have already gained and that is essential while you got out there as a fresher and try to find a data scientist job.
Job market is highly resistant to hire data scientist as a fresher. Everyone out there asks for at least 2 years of experience, but then the question is where will we get the two years experience from?
The important thing here to build a portfolio. As you are a fresher I would assume you had learnt data science through online courses. They only teach you the basics, the analytical skills required to clean the data and apply machine learning algorithms to them comes only from practice.
Do some real-world data science projects, participate in Kaggle competition. kaggle provides data sets for practice as well. Whatever projects you do, create a GitHub repository for it. Place all your projects there so when a recruiter is looking at your profile they know you have hands-on practice and do know the basics. This will take you a long way.
All the major data science jobs for freshers will only be available through off-campus interviews.
Some companies that hires data scientists are:
Siemens
Accenture
IBM
Cerner
Creating a technical portfolio will showcase the knowledge you have already gained and that is essential while you got out there as a fresher and try to find a data scientist job.
โค5
Artificial Intelligence on WhatsApp ๐
Top AI Channels on WhatsApp!
1. ChatGPT โ Your go-to AI for anything and everything. https://whatsapp.com/channel/0029VapThS265yDAfwe97c23
2. OpenAI โ Your gateway to cutting-edge artificial intelligence innovation. https://whatsapp.com/channel/0029VbAbfqcLtOj7Zen5tt3o
3. Microsoft Copilot โ Your productivity powerhouse. https://whatsapp.com/channel/0029VbAW0QBDOQIgYcbwBd1l
4. Perplexity AI โ Your AI-powered research buddy with real-time answers. https://whatsapp.com/channel/0029VbAa05yISTkGgBqyC00U
5. Generative AI โ Your creative partner for text, images, code, and more. https://whatsapp.com/channel/0029VazaRBY2UPBNj1aCrN0U
6. Prompt Engineering โ Your secret weapon to get the best out of AI. https://whatsapp.com/channel/0029Vb6ISO1Fsn0kEemhE03b
7. AI Tools โ Your toolkit for automating, analyzing, and accelerating everything. https://whatsapp.com/channel/0029VaojSv9LCoX0gBZUxX3B
8. AI Studio โ Everything about AI & Tech https://whatsapp.com/channel/0029VbAWNue1iUxjLo2DFx2U
9. Google Gemini โ Generate images & videos with AI. https://whatsapp.com/channel/0029Vb5Q4ly3mFY3Jz7qIu3i/103
10. Data Science & Machine Learning โ Your fuel for insights, predictions, and smarter decisions. https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
11. Data Science Projects โ Your engine for building smarter, self-learning systems. https://whatsapp.com/channel/0029VaxbzNFCxoAmYgiGTL3Z/208
React โค๏ธ for more
Top AI Channels on WhatsApp!
1. ChatGPT โ Your go-to AI for anything and everything. https://whatsapp.com/channel/0029VapThS265yDAfwe97c23
2. OpenAI โ Your gateway to cutting-edge artificial intelligence innovation. https://whatsapp.com/channel/0029VbAbfqcLtOj7Zen5tt3o
3. Microsoft Copilot โ Your productivity powerhouse. https://whatsapp.com/channel/0029VbAW0QBDOQIgYcbwBd1l
4. Perplexity AI โ Your AI-powered research buddy with real-time answers. https://whatsapp.com/channel/0029VbAa05yISTkGgBqyC00U
5. Generative AI โ Your creative partner for text, images, code, and more. https://whatsapp.com/channel/0029VazaRBY2UPBNj1aCrN0U
6. Prompt Engineering โ Your secret weapon to get the best out of AI. https://whatsapp.com/channel/0029Vb6ISO1Fsn0kEemhE03b
7. AI Tools โ Your toolkit for automating, analyzing, and accelerating everything. https://whatsapp.com/channel/0029VaojSv9LCoX0gBZUxX3B
8. AI Studio โ Everything about AI & Tech https://whatsapp.com/channel/0029VbAWNue1iUxjLo2DFx2U
9. Google Gemini โ Generate images & videos with AI. https://whatsapp.com/channel/0029Vb5Q4ly3mFY3Jz7qIu3i/103
10. Data Science & Machine Learning โ Your fuel for insights, predictions, and smarter decisions. https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
11. Data Science Projects โ Your engine for building smarter, self-learning systems. https://whatsapp.com/channel/0029VaxbzNFCxoAmYgiGTL3Z/208
React โค๏ธ for more
โค6๐ฅ1
Guys, Big Announcement! ๐
We've officially hit 3 Lakh subscribers on WhatsAppโ and it's time to kick off the next big learning journey together! ๐คฉ
Artificial Intelligence Complete Series โ a comprehensive, step-by-step journey from scratch to real-world applications. Whether you're a complete beginner or looking to take your AI skills to the next level, this series has got you covered!
This series is packed with real-world examples, hands-on projects, and tips to understand how AI impacts our world.
Hereโs what weโll cover:
*Week 1: Introduction to AI*
- What is AI? Understanding the basics without the jargon
- Types of AI: Narrow vs. General AI
- Key AI concepts (Machine Learning, Deep Learning, and Neural Networks)
- Real-world applications: From Chatbots to Self-Driving Cars ๐
- Tools & frameworks for AI (TensorFlow, Keras, PyTorch)
*Week 2: Core AI Techniques*
- Supervised vs. Unsupervised Learning
- Understanding Data: The backbone of AI
- Linear Regression: Your first AI algorithm!
- Decision Trees, K-Nearest Neighbors, and Support Vector Machines
- Hands-on project: Building a basic classifier with Python ๐
*Week 3: Deep Dive into Machine Learning*
- What makes ML different from AI?
- Gradient Descent & Model Optimization
- Evaluating Models: Accuracy, Precision, Recall, and F1-Score
- Hyperparameter Tuning
- Hands-on project: Building a predictive model with real data ๐
*Week 4: Introduction to Neural Networks*
- The fundamentals of neural networks & deep learning
- Understanding how a neural network mimics the human brain ๐ง
- Training your first Neural Network with TensorFlow
- Introduction to Backpropagation and Activation Functions
- Hands-on project: Build a simple neural network to recognize images ๐ธ
*Week 5: Advanced AI Concepts*
- Natural Language Processing (NLP): Teach machines to understand text and speech ๐ฃ๏ธ
- Computer Vision: Teaching machines to "see" with Convolutional Neural Networks (CNNs)
- Reinforcement Learning: AI that learns through trial and error (think AlphaGo)
- Real-world AI Use Cases: Healthcare, Finance, Gaming, and more
- Hands-on project: Implementing NLP for text classification ๐
*Week 6: Building Real-World AI Applications*
- AI in the real world: Chatbots, Recommendation Systems, and Fraud Detection
- Integrating AI with APIs and Web Services
- Cloud AI: Using AWS, Google Cloud, and Azure for scaling AI projects
- Hands-on project: Build a recommendation system like Netflix ๐ฌ
*Week 7: Preparing for AI Careers*
- Common interview questions for AI & ML roles ๐
- Building an AI Portfolio: Showcase your projects
- Understanding AI in Industry: How itโs transforming businesses
- Networking and building your career in AI ๐
Join our WhatsApp channel to access it for FREE: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y/1031
We've officially hit 3 Lakh subscribers on WhatsAppโ and it's time to kick off the next big learning journey together! ๐คฉ
Artificial Intelligence Complete Series โ a comprehensive, step-by-step journey from scratch to real-world applications. Whether you're a complete beginner or looking to take your AI skills to the next level, this series has got you covered!
This series is packed with real-world examples, hands-on projects, and tips to understand how AI impacts our world.
Hereโs what weโll cover:
*Week 1: Introduction to AI*
- What is AI? Understanding the basics without the jargon
- Types of AI: Narrow vs. General AI
- Key AI concepts (Machine Learning, Deep Learning, and Neural Networks)
- Real-world applications: From Chatbots to Self-Driving Cars ๐
- Tools & frameworks for AI (TensorFlow, Keras, PyTorch)
*Week 2: Core AI Techniques*
- Supervised vs. Unsupervised Learning
- Understanding Data: The backbone of AI
- Linear Regression: Your first AI algorithm!
- Decision Trees, K-Nearest Neighbors, and Support Vector Machines
- Hands-on project: Building a basic classifier with Python ๐
*Week 3: Deep Dive into Machine Learning*
- What makes ML different from AI?
- Gradient Descent & Model Optimization
- Evaluating Models: Accuracy, Precision, Recall, and F1-Score
- Hyperparameter Tuning
- Hands-on project: Building a predictive model with real data ๐
*Week 4: Introduction to Neural Networks*
- The fundamentals of neural networks & deep learning
- Understanding how a neural network mimics the human brain ๐ง
- Training your first Neural Network with TensorFlow
- Introduction to Backpropagation and Activation Functions
- Hands-on project: Build a simple neural network to recognize images ๐ธ
*Week 5: Advanced AI Concepts*
- Natural Language Processing (NLP): Teach machines to understand text and speech ๐ฃ๏ธ
- Computer Vision: Teaching machines to "see" with Convolutional Neural Networks (CNNs)
- Reinforcement Learning: AI that learns through trial and error (think AlphaGo)
- Real-world AI Use Cases: Healthcare, Finance, Gaming, and more
- Hands-on project: Implementing NLP for text classification ๐
*Week 6: Building Real-World AI Applications*
- AI in the real world: Chatbots, Recommendation Systems, and Fraud Detection
- Integrating AI with APIs and Web Services
- Cloud AI: Using AWS, Google Cloud, and Azure for scaling AI projects
- Hands-on project: Build a recommendation system like Netflix ๐ฌ
*Week 7: Preparing for AI Careers*
- Common interview questions for AI & ML roles ๐
- Building an AI Portfolio: Showcase your projects
- Understanding AI in Industry: How itโs transforming businesses
- Networking and building your career in AI ๐
Join our WhatsApp channel to access it for FREE: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y/1031
โค8
Master Artificial Intelligence in 10 days with free resources ๐๐
Day 1: Introduction to AI
- Start with an overview of what AI is and its various applications.
- Read articles or watch videos explaining the basics of AI.
Day 2-3: Machine Learning Fundamentals
- Learn the basics of machine learning, including supervised and unsupervised learning.
- Study concepts like data, features, labels, and algorithms.
Day 4-5: Deep Learning
- Dive into deep learning, understanding neural networks and their architecture.
- Learn about popular deep learning frameworks like TensorFlow or PyTorch.
Day 6: Natural Language Processing (NLP)
- Explore the basics of NLP, including tokenization, sentiment analysis, and named entity recognition.
Day 7: Computer Vision
- Study computer vision, including image recognition, object detection, and convolutional neural networks.
Day 8: AI Ethics and Bias
- Explore the ethical considerations in AI and the issue of bias in AI algorithms.
Day 9: AI Tools and Resources
- Familiarize yourself with AI development tools and platforms.
- Learn how to access and use AI datasets and APIs.
Day 10: AI Project
- Work on a small AI project. For example, build a basic chatbot, create an image classifier, or analyze a dataset using AI techniques.
Here are 5 amazing AI projects with free datasets: https://bit.ly/3ZVDjR1
Throughout the 10 days, it's important to practice what you learn through coding and practical exercises. Additionally, consider reading AI-related books and articles, watching online courses, and participating in AI communities and forums to enhance your learning experience.
Free Books and Courses to Learn Artificial Intelligence
๐๐
Introduction to AI Free Udacity Course
Introduction to Prolog programming for artificial intelligence Free Book
Introduction to AI for Business Free Course
Artificial Intelligence: Foundations of Computational Agents Free Book
Learn Basics about AI Free Udemy Course
(4.4 Star ratings out of 5)
Amazing AI Reverse Image Search
(4.7 Star ratings out of 5)
13 AI Tools to improve your productivity: https://t.iss.one/crackingthecodinginterview/619
4 AI Certifications for Developers: https://t.iss.one/datasciencefun/1375
Join @free4unow_backup for more free courses
ENJOY LEARNING๐๐
Day 1: Introduction to AI
- Start with an overview of what AI is and its various applications.
- Read articles or watch videos explaining the basics of AI.
Day 2-3: Machine Learning Fundamentals
- Learn the basics of machine learning, including supervised and unsupervised learning.
- Study concepts like data, features, labels, and algorithms.
Day 4-5: Deep Learning
- Dive into deep learning, understanding neural networks and their architecture.
- Learn about popular deep learning frameworks like TensorFlow or PyTorch.
Day 6: Natural Language Processing (NLP)
- Explore the basics of NLP, including tokenization, sentiment analysis, and named entity recognition.
Day 7: Computer Vision
- Study computer vision, including image recognition, object detection, and convolutional neural networks.
Day 8: AI Ethics and Bias
- Explore the ethical considerations in AI and the issue of bias in AI algorithms.
Day 9: AI Tools and Resources
- Familiarize yourself with AI development tools and platforms.
- Learn how to access and use AI datasets and APIs.
Day 10: AI Project
- Work on a small AI project. For example, build a basic chatbot, create an image classifier, or analyze a dataset using AI techniques.
Here are 5 amazing AI projects with free datasets: https://bit.ly/3ZVDjR1
Throughout the 10 days, it's important to practice what you learn through coding and practical exercises. Additionally, consider reading AI-related books and articles, watching online courses, and participating in AI communities and forums to enhance your learning experience.
Free Books and Courses to Learn Artificial Intelligence
๐๐
Introduction to AI Free Udacity Course
Introduction to Prolog programming for artificial intelligence Free Book
Introduction to AI for Business Free Course
Artificial Intelligence: Foundations of Computational Agents Free Book
Learn Basics about AI Free Udemy Course
(4.4 Star ratings out of 5)
Amazing AI Reverse Image Search
(4.7 Star ratings out of 5)
13 AI Tools to improve your productivity: https://t.iss.one/crackingthecodinginterview/619
4 AI Certifications for Developers: https://t.iss.one/datasciencefun/1375
Join @free4unow_backup for more free courses
ENJOY LEARNING๐๐
โค3
Artificial Intelligence isn't easy!
Itโs the cutting-edge field that enables machines to think, learn, and act like humans.
To truly master Artificial Intelligence, focus on these key areas:
0. Understanding AI Fundamentals: Learn the basic concepts of AI, including search algorithms, knowledge representation, and decision trees.
1. Mastering Machine Learning: Since ML is a core part of AI, dive into supervised, unsupervised, and reinforcement learning techniques.
2. Exploring Deep Learning: Learn neural networks, CNNs, RNNs, and GANs to handle tasks like image recognition, NLP, and generative models.
3. Working with Natural Language Processing (NLP): Understand how machines process human language for tasks like sentiment analysis, translation, and chatbots.
4. Learning Reinforcement Learning: Study how agents learn by interacting with environments to maximize rewards (e.g., in gaming or robotics).
5. Building AI Models: Use popular frameworks like TensorFlow, PyTorch, and Keras to build, train, and evaluate your AI models.
6. Ethics and Bias in AI: Understand the ethical considerations and challenges of implementing AI responsibly, including fairness, transparency, and bias.
7. Computer Vision: Master image processing techniques, object detection, and recognition algorithms for AI-powered visual applications.
8. AI for Robotics: Learn how AI helps robots navigate, sense, and interact with the physical world.
9. Staying Updated with AI Research: AI is an ever-evolving fieldโstay on top of cutting-edge advancements, papers, and new algorithms.
Artificial Intelligence is a multidisciplinary field that blends computer science, mathematics, and creativity.
๐ก Embrace the journey of learning and building systems that can reason, understand, and adapt.
โณ With dedication, hands-on practice, and continuous learning, youโll contribute to shaping the future of intelligent systems!
Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://t.iss.one/datasciencefun
Like if you need similar content ๐๐
Hope this helps you ๐
Itโs the cutting-edge field that enables machines to think, learn, and act like humans.
To truly master Artificial Intelligence, focus on these key areas:
0. Understanding AI Fundamentals: Learn the basic concepts of AI, including search algorithms, knowledge representation, and decision trees.
1. Mastering Machine Learning: Since ML is a core part of AI, dive into supervised, unsupervised, and reinforcement learning techniques.
2. Exploring Deep Learning: Learn neural networks, CNNs, RNNs, and GANs to handle tasks like image recognition, NLP, and generative models.
3. Working with Natural Language Processing (NLP): Understand how machines process human language for tasks like sentiment analysis, translation, and chatbots.
4. Learning Reinforcement Learning: Study how agents learn by interacting with environments to maximize rewards (e.g., in gaming or robotics).
5. Building AI Models: Use popular frameworks like TensorFlow, PyTorch, and Keras to build, train, and evaluate your AI models.
6. Ethics and Bias in AI: Understand the ethical considerations and challenges of implementing AI responsibly, including fairness, transparency, and bias.
7. Computer Vision: Master image processing techniques, object detection, and recognition algorithms for AI-powered visual applications.
8. AI for Robotics: Learn how AI helps robots navigate, sense, and interact with the physical world.
9. Staying Updated with AI Research: AI is an ever-evolving fieldโstay on top of cutting-edge advancements, papers, and new algorithms.
Artificial Intelligence is a multidisciplinary field that blends computer science, mathematics, and creativity.
๐ก Embrace the journey of learning and building systems that can reason, understand, and adapt.
โณ With dedication, hands-on practice, and continuous learning, youโll contribute to shaping the future of intelligent systems!
Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://t.iss.one/datasciencefun
Like if you need similar content ๐๐
Hope this helps you ๐
โค4
AโZ of Artificial Intelligence (AI)
A โ Artificial Intelligence
B โ Backpropagation
C โ Classification
D โ Deep Learning
E โ Expert Systems
F โ Feature Engineering
G โ Generative Models
H โ Heuristics
I โ Inference
J โ Joint Probability
K โ K-Means Clustering
L โ Loss Function
M โ Machine Learning
N โ Neural Networks
O โ Overfitting
P โ Precision
Q โ Q-Learning
R โ Reinforcement Learning
S โ Supervised Learning
T โ Transfer Learning
U โ Unsupervised Learning
V โ Variational Autoencoder
W โ Weight Initialization
X โ XOR Problem
Y โ YOLO (You Only Look Once)
Z โ Zero-shot Learning
React โค๏ธ for detailed explanation of each concept
A โ Artificial Intelligence
B โ Backpropagation
C โ Classification
D โ Deep Learning
E โ Expert Systems
F โ Feature Engineering
G โ Generative Models
H โ Heuristics
I โ Inference
J โ Joint Probability
K โ K-Means Clustering
L โ Loss Function
M โ Machine Learning
N โ Neural Networks
O โ Overfitting
P โ Precision
Q โ Q-Learning
R โ Reinforcement Learning
S โ Supervised Learning
T โ Transfer Learning
U โ Unsupervised Learning
V โ Variational Autoencoder
W โ Weight Initialization
X โ XOR Problem
Y โ YOLO (You Only Look Once)
Z โ Zero-shot Learning
React โค๏ธ for detailed explanation of each concept
โค16
๐๐ข๐ฆ๐ฉ๐ฅ๐ ๐๐ฎ๐ข๐๐ ๐ญ๐จ ๐๐๐๐ซ๐ง ๐๐๐๐ก๐ข๐ง๐ ๐๐๐๐ซ๐ง๐ข๐ง๐ ๐๐จ๐ซ ๐๐๐ญ๐ ๐๐ง๐๐ฅ๐ฒ๐ญ๐ข๐๐ฌ ๐
๐ ๐๐ก๐๐ญ ๐ข๐ฌ ๐๐๐๐ก๐ข๐ง๐ ๐๐๐๐ซ๐ง๐ข๐ง๐ ?
Imagine you're teaching a child to recognize fruits. You show them an apple, tell them itโs an apple, and next time they know it. Thatโs what Machine Learning does! But instead of a child, itโs a computer, and instead of fruits, it learns from data.
Machine Learning is about teaching computers to learn from past data so they can make smart decisions or predictions on their own, improving over time without needing new instructions.
๐ค ๐๐ก๐ฒ ๐ข๐ฌ ๐๐๐๐ก๐ข๐ง๐ ๐๐๐๐ซ๐ง๐ข๐ง๐ ๐๐ฆ๐ฉ๐จ๐ซ๐ญ๐๐ง๐ญ ๐๐จ๐ซ ๐๐๐ญ๐ ๐๐ง๐๐ฅ๐ฒ๐ญ๐ข๐๐ฌ?
Machine Learning makes data analytics super powerful. Instead of just looking at past data, it can help predict future trends, find patterns we didnโt notice, and make decisions that help businesses grow!
๐ฎ ๐๐จ๐ฐ ๐ญ๐จ ๐๐๐๐ซ๐ง ๐๐๐๐ก๐ข๐ง๐ ๐๐๐๐ซ๐ง๐ข๐ง๐ ๐๐จ๐ซ ๐๐๐ญ๐ ๐๐ง๐๐ฅ๐ฒ๐ญ๐ข๐๐ฌ?
โ ๐๐๐๐ซ๐ง ๐๐ฒ๐ญ๐ก๐จ๐ง: Python is the most commonly used language in ML. Start by getting comfortable with basic Python, then move on to ML-specific libraries like:
๐ฉ๐๐ง๐๐๐ฌ: For data manipulation.
๐๐ฎ๐ฆ๐๐ฒ: For numerical calculations.
๐ฌ๐๐ข๐ค๐ข๐ญ-๐ฅ๐๐๐ซ๐ง: For implementing basic ML algorithms.
โ ๐๐ง๐๐๐ซ๐ฌ๐ญ๐๐ง๐ ๐ญ๐ก๐ ๐๐๐ฌ๐ข๐๐ฌ ๐จ๐ ๐๐ญ๐๐ญ๐ข๐ฌ๐ญ๐ข๐๐ฌ: ML relies heavily on concepts like probability, distributions, and hypothesis testing. Understanding basic statistics will help you grasp how models work.
โ ๐๐ซ๐๐๐ญ๐ข๐๐ ๐จ๐ง ๐๐๐๐ฅ ๐๐๐ญ๐๐ฌ๐๐ญ๐ฌ: Platforms like Kaggle offer datasets and ML competitions. Start by analyzing small datasets to understand how machine learning models make predictions.
โ ๐๐๐๐ซ๐ง ๐๐ข๐ฌ๐ฎ๐๐ฅ๐ข๐ณ๐๐ญ๐ข๐จ๐ง: Use tools like Matplotlib or Seaborn to visualize data. This will help you understand patterns in the data and how machine learning models interpret them.
โ ๐๐จ๐ซ๐ค ๐จ๐ง ๐๐ข๐ฆ๐ฉ๐ฅ๐ ๐๐ซ๐จ๐ฃ๐๐๐ญ๐ฌ: Start with basic ML projects such as:
-Predicting house prices.
-Classifying emails as spam or not spam.
-Clustering customers based on their purchasing habits.
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Like if you need similar content ๐๐
๐ ๐๐ก๐๐ญ ๐ข๐ฌ ๐๐๐๐ก๐ข๐ง๐ ๐๐๐๐ซ๐ง๐ข๐ง๐ ?
Imagine you're teaching a child to recognize fruits. You show them an apple, tell them itโs an apple, and next time they know it. Thatโs what Machine Learning does! But instead of a child, itโs a computer, and instead of fruits, it learns from data.
Machine Learning is about teaching computers to learn from past data so they can make smart decisions or predictions on their own, improving over time without needing new instructions.
๐ค ๐๐ก๐ฒ ๐ข๐ฌ ๐๐๐๐ก๐ข๐ง๐ ๐๐๐๐ซ๐ง๐ข๐ง๐ ๐๐ฆ๐ฉ๐จ๐ซ๐ญ๐๐ง๐ญ ๐๐จ๐ซ ๐๐๐ญ๐ ๐๐ง๐๐ฅ๐ฒ๐ญ๐ข๐๐ฌ?
Machine Learning makes data analytics super powerful. Instead of just looking at past data, it can help predict future trends, find patterns we didnโt notice, and make decisions that help businesses grow!
๐ฎ ๐๐จ๐ฐ ๐ญ๐จ ๐๐๐๐ซ๐ง ๐๐๐๐ก๐ข๐ง๐ ๐๐๐๐ซ๐ง๐ข๐ง๐ ๐๐จ๐ซ ๐๐๐ญ๐ ๐๐ง๐๐ฅ๐ฒ๐ญ๐ข๐๐ฌ?
โ ๐๐๐๐ซ๐ง ๐๐ฒ๐ญ๐ก๐จ๐ง: Python is the most commonly used language in ML. Start by getting comfortable with basic Python, then move on to ML-specific libraries like:
๐ฉ๐๐ง๐๐๐ฌ: For data manipulation.
๐๐ฎ๐ฆ๐๐ฒ: For numerical calculations.
๐ฌ๐๐ข๐ค๐ข๐ญ-๐ฅ๐๐๐ซ๐ง: For implementing basic ML algorithms.
โ ๐๐ง๐๐๐ซ๐ฌ๐ญ๐๐ง๐ ๐ญ๐ก๐ ๐๐๐ฌ๐ข๐๐ฌ ๐จ๐ ๐๐ญ๐๐ญ๐ข๐ฌ๐ญ๐ข๐๐ฌ: ML relies heavily on concepts like probability, distributions, and hypothesis testing. Understanding basic statistics will help you grasp how models work.
โ ๐๐ซ๐๐๐ญ๐ข๐๐ ๐จ๐ง ๐๐๐๐ฅ ๐๐๐ญ๐๐ฌ๐๐ญ๐ฌ: Platforms like Kaggle offer datasets and ML competitions. Start by analyzing small datasets to understand how machine learning models make predictions.
โ ๐๐๐๐ซ๐ง ๐๐ข๐ฌ๐ฎ๐๐ฅ๐ข๐ณ๐๐ญ๐ข๐จ๐ง: Use tools like Matplotlib or Seaborn to visualize data. This will help you understand patterns in the data and how machine learning models interpret them.
โ ๐๐จ๐ซ๐ค ๐จ๐ง ๐๐ข๐ฆ๐ฉ๐ฅ๐ ๐๐ซ๐จ๐ฃ๐๐๐ญ๐ฌ: Start with basic ML projects such as:
-Predicting house prices.
-Classifying emails as spam or not spam.
-Clustering customers based on their purchasing habits.
I have curated the best interview resources to crack Data Science Interviews
๐๐
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Like if you need similar content ๐๐
โค10๐ฅ1๐ฅฐ1