Машиннное обучение | Наука о данных Библиотека
16.9K subscribers
780 photos
11 videos
21 files
672 links
админ - @workakkk

@ai_machinelearning_big_data - Machine learning

@itchannels_telegram - 🔥лучшие ит-каналы

@pythonl - Python

@pythonlbooks- python книги📚

@datascienceiot - ml книги📚

№ 5037635661
Download Telegram
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
✔️ OpenAI приобрела аналитическую платформу Statsig за $1,1 млрд.

Компания объявила о покупке Statsig - платформы, специализирующейся на продуктовой аналитике и A/B-тестировании. Ее основатель и CEO Statsig, Виджая Раджи, будет назначен на пост технического директора по приложениям (CTO of Applications) в OpenAI. Он возглавит продуктовую инженерию для ChatGPT и Codex. Вся команда Statsig присоединится к OpenAI, однако сама платформа продолжит работать независимо и обслуживать текущих клиентов.
openai.com

✔️ ChatGPT получит обновление системы безопасности.

OpenAI анонсировала новые функции безопасности для ChatGPT для на защиты молодых пользователей и помощи в кризисных ситуациях. Первая новинка - система автоматической маршрутизации: при обнаружении признаков острого психологического стресса разговор будет передаваться "думающим" моделям. Они обучены с помощью метода Deliberative Alignment и дают более медленные и взвешенные ответы. Обновление планируется выпустить в течение 120 дней.

В ближайший месяц также появятся функции родительского контроля. Родители смогут связывать свои аккаунты с аккаунтами подростков от 13 лет, чтобы устанавливать ограничения и получать оповещения, если система зафиксирует у ребенка признаки кризисного состояния.
openai.com

✔️ Швейцария представила национальную опенсорсную LLM.

В Швейцарии состоялся запуск Apertus — национальной LLM с открытым исходным кодом. Проект, разработанный консорциумом государственных институтов, позиционируется как альтернатива коммерческим моделям. Apertus полностью прозрачен: разработчики опубликовали не только саму модель, но и исходный код процесса обучения, документацию и использованные наборы данных.

Модель обучена на 15 трлн. токенов и поддерживает более 1000 языков, 40% данных - не на английском. Apertus создавалась с учетом швейцарских и европейских законов о защите данных и авторском праве, что делает ее привлекательной для местного бизнеса. Модель доступна на Hugging Face в 2 версиях: 8 и 70 млрд. параметров.
swissinfo.ch

✔️ Dolby представила новый стандарт Dolby Vision 2 с ИИ.

Dolby Vision 2 - следующее поколение формата HDR, который постепенно заменит Dolby Vision и Dolby Vision IQ. Особенность новой технологии - использование ИИ для динамической подстройки качества изображения в реальном времени.

Система Content Intelligence будет анализировать сцены, учитывать условия освещения в комнате и с помощью машинного обучения корректировать картинку "на лету". Например, функция Precision Black улучшит детализацию в темных сценах, а Light Sense адаптирует изображение под окружающую среду.

Первым производителем, который внедрит Dolby Vision 2, станет Hisense, а первым чипом со встроенной поддержкой нового стандарта будет MediaTek Pentonic 800.
dolby.com

✔️ В ЦЕРН использовали ИИ для поиска редкого распада бозона Хиггса.

ЦЕРН применила методы машинного обучения для поиска редких событий - распада бозона Хиггса на два charm-кварка. Эта задача критически важна для проверки Стандартной модели, так как взаимодействие бозона с легкими кварками, из которых состоит обычная материя, до сих пор экспериментально не подтверждено.

Основная сложность заключалась в идентификации так называемых «джетов», порожденных именно charm-кварками. Для этого исследователи использовали графовую нейронную сеть, обученную на сотнях миллионов симуляций, а для отделения реальных событий от фонового шума была задействована сеть, архитектурно схожая с ChatGPT.

В результате анализа данных, собранных на БАК, удалось установить самые строгие на сегодняшний день ограничения на силу взаимодействия бозона Хиггса с charm-кварком. Это значительный шаг в понимании механизма, который придает массу фундаментальным частицам.
scitechdaily.com


@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
5👍4
🤯 Apple и Оксфорд сделали ИИ умнее в 6,5 раза

Вместо того чтобы просто "угадывать ответ", агент теперь сам задаёт правильные вопросы.
Успешность выросла с 14% до 91%, и это работает на уже существующих моделях — без дообучения.

🔄 Принцип:
1. Агент придумывает возможные решения.
2. Считает, какой вопрос сузит список максимально.
3. Задаёт только один лучший вопрос.
4. Фильтрует варианты и повторяет цикл, пока не найдёт ответ.

Зачем это нужно:
- Бизнесу → меньше ошибок, быстрее диагностика, точнее персонализация.
- Разработчикам → фреймворк можно использовать уже сегодня.
- Учёным → победа информационной теории: точные вопросы эффективнее любых эвристик.

#AI #Apple #Oxford #LLM #Agents

https://arxiv.org/pdf/2508.21184
👍6🔥3💩2😁1
Forwarded from Machinelearning
🔥 Бесплатная книга от инженера Google — Agentic Design Patterns

400 страниц про всё, что нужно знать об агентных системах. Автор — senior engineer в Google, выложил драфт для открытого ревью.

📖 В книге:
- продвинутые техники промптинга
- паттерны для мульти-агентов
- использование инструментов и MCP
- практические примеры с кодом

По сути, это полный справочник по построению умных агентов. Must-read для разработчиков AI.

📚 Читать

@ai_machinelearning_big_data


#AI #Agents #Google #OpenSource #freebook
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍52💩2🔥1
Forwarded from Machinelearning
📌Почему языковые модели галлюцинируют.

OpenAI опубликовали исследование о причинах галлюцинации LLM.

Галлюцинации - это не мистический сбой в сознании ИИ, а вполне предсказуемый побочный эффект его обучения.

Представьте, что перед моделью стоит задача бинарной классификации - определить, является ли предложенное утверждение корректным или нет. Математическая выкладка в исследовании проста: уровень ошибок генерации как минимум в 2 раза превышает уровень ошибок классификации. Если модель не способна надежно отличить факт от вымысла, она неизбежно будет этот вымысел генерировать.

🟡Все начинается еще на претрейне.

Даже на идеально чистых данных статистические цели обучения подталкивают модель к генерации ошибок. Особенно это касается фактов, которые редко встречаются в обучающей выборке.

В работе вводится понятие singleton rate — доля фактов, которые появились в данных лишь один раз. Теоретический расклад показывает, что уровень галлюцинаций модели будет как минимум равен этой доле.

Проще говоря, если 20% фактов о днях рождения в датасете встретились единожды, модель будет выдумывать дни рождения как минимум в 20% случаев.

🟡Эксперименты это подтверждают.

Модель DeepSeek-V3, на просьбу назвать день рождения одного из авторов статьи, трижды выдала неверные даты: 03-07, 15-06 и 01-01. Ни одна из них не была даже близка к правильной (осенью).

В другом тесте, где нужно было сосчитать количество букв D в слове DEEPSEEK, та же DeepSeek-V3 выдавала 2 или 3, а модели компании Марка Цукерберга и Claude 3.7 Sonnet доходили до 6 и 7.

При этом базовые модели после претрейна часто показывают отличную калибровку. Например, у предобученной GPT-4 ожидаемая ошибка калибровки составляла всего 0.007, что говорит о высокой статистической адекватности ее предсказаний. Кто бы сомневался.

🟡Почему галлюцинации не исчезают после пост-тренинга и RLHF?

Ответ на этот вопрос - в системе оценки. Большинство современных бенчмарков поощряют угадывание. Модели, по сути, постоянно находятся в режиме сдачи экзамена, где за правильный ответ дают 1 балл, а за пустой бланк или ответ я не знаю - 0. В такой системе оптимальная стратегия при неуверенности - только угадать. Любой шанс на правильный ответ лучше, чем гарантированный ноль.

Эту гипотезу подтвердили анализом популярных оценочных наборов.

В GPQA, MMLU-Pro, Omni-MATH, SWE-bench и HLE используется строго бинарная система оценки (правильно/неправильно). Возможности получить частичный балл за честное признание в незнании там просто нет. Из 10 рассмотренных в исследовании популярных бенчмарков только один, WildBench, присуждает частичные баллы за ответы формата я не знаю. Остальные же фактически наказывают модель за отказ галлюцинировать, создавая эпидемию штрафов за неуверенность и поощряя ее выдавать правдоподобную ложь.

🟡Что делать инженерам.

OpenAI предлагает встраивать явные целевые уровни уверенности в рубрики, вводить поведенческую калибровку и оценивать модели по секциям с разными порогами уверенности.

Еще рекомендуют включают мониторинг singleton-rate на корпусе, измерение вероятности важных ответов, комбинирование RAG с верификацией фактов и изменение лидербордов чтобы ответы я не знаю не штрафовались автоматически.

🔜 Читать статью полностью


@ai_machinelearning_big_data

#AI #ML #LLM #Research #OpenAI
Please open Telegram to view this post
VIEW IN TELEGRAM
👍21🤔1