❤9👍5🔥3
Forwarded from Machinelearning
Этот открытый учебник считается де-факто стандартом и одним из самых авторитетных и всеобъемлющих ресурсов для изучения областей обработки естественного языка (NLP), вычислительной лингвистики и обработки речи.
Книга разделена на три части, включающие 24 основные главы и 8 приложений.
Темы охватывают широкий спектр, включая:
Для каждой главы доступны слайды в форматах PPTX и PDF, что делает ресурс полезным для преподавателей.
Для всех, кто заинтересован в изучении NLP это фантастически полезный ресурс.
@ai_machinelearning_big_data
#freebook #opensource #nlp
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9❤3
📚 «Линейная алгебра»
Вторая лучшая книга по линейной алгебре с ~1000 практических задач.
Идеально для ИИ и машинного обучения.
Книга полностью бесплатна .
Прекрасно подходит для новичков.
📌 Книга
@machinelearning_books
Вторая лучшая книга по линейной алгебре с ~1000 практических задач.
Идеально для ИИ и машинного обучения.
Книга полностью бесплатна .
Прекрасно подходит для новичков.
📌 Книга
@machinelearning_books
👍6❤2🔥2
🔥 «Упражнения по машинному обучению»
В этой книге более 75 упражнений. И она абсолютно БЕСПЛАТНА.
🔗 Книга
🔗 GitHub
@machinelearning_books
В этой книге более 75 упражнений. И она абсолютно БЕСПЛАТНА.
🔗 Книга
🔗 GitHub
@machinelearning_books
🔥9👍5🥰2
⚡️ Implement minimal-GPT from scratch.
MinimalGPT — это небольшое учебное пособие (гайд), в котором демонстрируется «упрощённая» реализация архитектуры GPT. На странице раскрываются основные принципы работы модели и приводится минимально необходимый код для её запуска. Основная идея заключается в том, чтобы показать, как устроена GPT‑модель на базовом уровне, без избыточного усложнения и обилия вспомогательных библиотек.
Внутри гайда обычно можно найти:
▪ Описание основных слоёв GPT (внимание, Feed-Forward блоки и т.д.)
▪ Минимальные примеры кода (часто на Python с использованием PyTorch или аналогичных фреймворков)
▪ Краткие пояснения к каждому этапу (инициализация слоёв, механизм attention, обучение/инференс)
▪ Рекомендации по расширению и дальнейшему совершенствованию кода
Таким образом, MinimalGPT служит отправной точкой для понимания того, как работает GPT, и даёт возможность собрать простейшую версию модели своими руками.
🔗 Читать
@machinelearning_books
MinimalGPT — это небольшое учебное пособие (гайд), в котором демонстрируется «упрощённая» реализация архитектуры GPT. На странице раскрываются основные принципы работы модели и приводится минимально необходимый код для её запуска. Основная идея заключается в том, чтобы показать, как устроена GPT‑модель на базовом уровне, без избыточного усложнения и обилия вспомогательных библиотек.
Внутри гайда обычно можно найти:
▪ Описание основных слоёв GPT (внимание, Feed-Forward блоки и т.д.)
▪ Минимальные примеры кода (часто на Python с использованием PyTorch или аналогичных фреймворков)
▪ Краткие пояснения к каждому этапу (инициализация слоёв, механизм attention, обучение/инференс)
▪ Рекомендации по расширению и дальнейшему совершенствованию кода
Таким образом, MinimalGPT служит отправной точкой для понимания того, как работает GPT, и даёт возможность собрать простейшую версию модели своими руками.
🔗 Читать
@machinelearning_books
🔥7👍5❤3💩1
Forwarded from Machinelearning
Sakana AI впервые провела реальный эксперимент: три научные статьи, полностью сгенерированные ИИ (The AI Scientist-v2), были отправлены на слепое рецензирование на ICLR Workshop 2025.
Одна из них получила баллы выше среднего уровня принятия — лучше многих статей, написанных людьми. Это исторический момент в научной публикационной практике.
Статьи были на 100% созданы AI — от идеи до финального форматирования и списка литературы.
Человек не правил ни одного слова: только выбрал тему и три лучшие статьи из набора, сгенерированного AI.
В ICLR Workshop было отправлено 3 статьи из 43 (≈7%) — рецензенты знали, что среди них есть AI-работы, но не знали, какие именно.
- 2 статьи были отклонены.
- 1 статья прошла, получив баллы:
Средняя оценка статьи: 6.33 — это выше, чем у многих человеческих работ, принятых на воркшоп.
— Придумывает научные идеи
— Пишет и запускает код для экспериментов
— Анализирует результаты, строит графики
— Сама пишет статью в научном формате
— И… сама себя рецензирует
@ai_machinelearning_big_data
#ai #ml #Sakana
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5🤡5❤4🔥1💩1
В формате картинок и шорстов даже новички смогут использовать продвинутые инструменты разработки и использовать Docker.
Учиться с удовольствием: t.iss.one/DevopsDocker
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4🥰2
@machinelearning_books
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥7👍4❤3
Это полезный ресурс для улучшения работы с моделью.
В руководство включен подробный "агентный промпт" (Agentic Prompt).
Именно этот промпт OpenAI использовала для достижения рекордно высокого балла в сложном бенчмарке по разработке ПО SWE-bench Verified.
Что представляет собой этот агентный промпт?
Это, по сути, детальная инструкция для GPT-4, нацеленная на автономное решение задач по исправлению кода в репозиториях. Ключевые принципы, заложенные в нем:
- Глубокое понимание: Сначала тщательно изучить проблему.
- Исследование: Проанализировать кодовую базу.
- Планирование: Разработать четкий пошаговый план.
- Тестирование: Часто запускать тесты после каждого шага.
- Итерация: Повторять процесс до полного решения проблемы.
- Строгая верификация: Убедиться в корректности и надежности решения
- Автономность: Работать с предоставленными проектами без доступа к интернету и не завершать работу до полного решения.
Этот подход демонстрирует, как структурированные, пошаговые инструкции с акцентом на тестирование и итерацию могут значительно повысить эффективность ИИ в сложных задачах программирования.
📚 Руководство
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8❤3🔥2👎1🤮1💩1
Media is too big
VIEW IN TELEGRAM
Что объединяет успешный собес и продвинутый анализ данных? Оба требуют способности выделять главное из информационного шума!
В мире данных этот суперскилл называется методом главных компонент (PCA) — это как рентген для ваших данных, который мгновенно показывает всю суть, отбрасывая неважные детали.
Например, мы проанализировали 453 акции компаний из списка S&P 500 и выяснили, что всего одна главная компонента объясняет 38% всей динамики рынка. Как такое возможно?
Вы будете работать с реальными данными, научитесь выявлять скрытые закономерности и применять эти инсайты в своих проектах.
Стоимость: 3990 ₽
Не беспокойтесь, если теоретическая база пока хромает — вы можете заранее посмотреть запись нашего вебинара по основам по ссылке ниже.
Реклама. ИП Дрёмов Артём Сергеевич, ИНН 771391651571. Erid 2VtzqvFafi1
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1👍1😁1🤮1
Вы когда-нибудь хотели сделать свою собственную систему рекомендаций фильмов? 🎬
Приходите на бесплатный вебинар, где Савелий Батурин, Senior ML-Engineer и преподаватель курса по ML школы Simulative в прямом эфире покажет как построить рекомендательную систему фильмов на Kaggle.
Что будем делать на вебинаре:
Вебинар будет интересен как новичкам, так и уже опытным специалистам
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2👍1👎1
Forwarded from Machinelearning
Classifier Factory — это интуитивно понятное руководство для создания и обучения собственных моделей классификации на базе компактных LLM от Mistral AI.
С его помощью — как через веб‑интерфейс La Plateforme, так и через API — можно быстро разворачивать решения для модерации контента, детекции намерений, анализа тональности, кластеризации данных, обнаружения мошенничества, фильтрации спама, рекомендательных систем и других задач
Classifier Factory поможет упростить весь цикл работы с custom‑классификаторами: от подготовки данных до развёртывания готовой модели в продакшене.
@ai_machinelearning_big_data
#Mistral #api
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3👍3
Forwarded from Machinelearning
15 бесплатных книг по Data Science (часть 1)*
1. *Veridical Data Science*
👩🔬 Авторы: Bin Yu & Rebecca L. Barter
Описание: Введение в науку о данных (data science): как область возникла, как она развивается и какую роль играет в современном мире.
🔗 https://vdsbook.com/
2. *Data Science: Theories, Models, Algorithms, and Analytics*
📘 Автор: Sanjiv Ranjan Das
Описание: Учебник по DS с упором на алгоритмы и аналитику.
🔗 https://srdas.github.io/Papers/DSA_Book.pdf
3. *Think Python 3E*
🐍 Автор: Allen B. Downey
Описание: Современное введение в Python с нуля.
🔗 https://greenteapress.com/wp/think-python-3rd-edition/
4. *Python Data Science Handbook*
📊 Автор: Jake VanderPlas
Описание: Практика работы с NumPy, pandas, sklearn и визуализациями.
🔗 https://jakevdp.github.io/PythonDataScienceHandbook/
5. *R for Data Science*
📈 Авторы: Hadley Wickham и др.
Описание: Современный подход к анализу данных в R.
🔗 https://r4ds.hadley.nz/
6. *Think Stats 3E*
📐 Автор: Allen B. Downey
Описание: Статистика через Python и практику.
🔗 https://allendowney.github.io/ThinkStats/
7. *Statistics and Prediction Algorithms Through Case Studies*
📙 Автор: Rafael A. Irizarry
Описание: Кейсы по статистике и прогнозированию с кодом на R.
🔗 https://rafalab.github.io/dsbook/
8. *Bayesian Methods for Hackers*
🧠 Автор: Cameron Davidson-Pilon
Описание: Визуальное введение в байесовский анализ с PyMC.
🔗 https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers
9. *Think Bayes 2E*
🔢 Автор: Allen B. Downey
Описание: Пошаговый байесовский подход на Python.
🔗 https://allendowney.github.io/ThinkBayes2/
10. *Data Science at the Command Line*
💻 Автор: Jeroen Janssens
Описание: Unix-инструменты как основа для анализа данных.
🔗 https://datascienceatthecommandline.com/
Математика и теория вероятностей:
11. Теория вероятностей
👩🔬 Автор: Чернова Н. И.
Описание: Понятное введение в теорию вероятностей, основа для изучения математической статистики.
🔗 https://www.nsu.ru/mmf/tvims/chernova/tv/tv_nsu07.pdf
12. * Математическая статистика*
👩🔬 Автор: Чернова Н. И.
Описание: Продолжение курса по теории вероятностей (НГУ), покрывающее основы математической статистики: оценки параметров, проверка гипотез, регрессионный анализ.
🔗 https://www.nsu.ru/mmf/tvims/chernova/ms/ms_nsu07.pdf
13. * Курс дифференциального и интегрального исчисления (Том 1)*
👩🔬 Автор: Фихтенгольц Г. М.
Описание: Фундаментальный и классический учебник по основам математического анализа.
🔗 https://math.ru/lib/book/djvu/fichtengolz/f_1.djvu
14.*Векторные исчисления для инженеров*
👩🔬 Автор:Jeffrey R. Chasnov
🔗 https://math.ru/lib/book/djvu/fichtengolz/f_1.djvu
15 .*Theory—Theoretical & Mathematical Foundations ;
👩🔬Daniel A. Roberts, Sho Yaida, Boris Hanin
Описание: Эта книга предлагает теоретический подход к анализу глубинных нейросетей с практической значимостью
🔗https://arxiv.org/abs/2106.10165
📘 Еще больше книг здесь
@ai_machinelearning_big_data
#books #opensource #freebooks
1. *Veridical Data Science*
👩🔬 Авторы: Bin Yu & Rebecca L. Barter
Описание: Введение в науку о данных (data science): как область возникла, как она развивается и какую роль играет в современном мире.
🔗 https://vdsbook.com/
2. *Data Science: Theories, Models, Algorithms, and Analytics*
📘 Автор: Sanjiv Ranjan Das
Описание: Учебник по DS с упором на алгоритмы и аналитику.
🔗 https://srdas.github.io/Papers/DSA_Book.pdf
3. *Think Python 3E*
🐍 Автор: Allen B. Downey
Описание: Современное введение в Python с нуля.
🔗 https://greenteapress.com/wp/think-python-3rd-edition/
4. *Python Data Science Handbook*
📊 Автор: Jake VanderPlas
Описание: Практика работы с NumPy, pandas, sklearn и визуализациями.
🔗 https://jakevdp.github.io/PythonDataScienceHandbook/
5. *R for Data Science*
📈 Авторы: Hadley Wickham и др.
Описание: Современный подход к анализу данных в R.
🔗 https://r4ds.hadley.nz/
6. *Think Stats 3E*
📐 Автор: Allen B. Downey
Описание: Статистика через Python и практику.
🔗 https://allendowney.github.io/ThinkStats/
7. *Statistics and Prediction Algorithms Through Case Studies*
📙 Автор: Rafael A. Irizarry
Описание: Кейсы по статистике и прогнозированию с кодом на R.
🔗 https://rafalab.github.io/dsbook/
8. *Bayesian Methods for Hackers*
🧠 Автор: Cameron Davidson-Pilon
Описание: Визуальное введение в байесовский анализ с PyMC.
🔗 https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers
9. *Think Bayes 2E*
🔢 Автор: Allen B. Downey
Описание: Пошаговый байесовский подход на Python.
🔗 https://allendowney.github.io/ThinkBayes2/
10. *Data Science at the Command Line*
💻 Автор: Jeroen Janssens
Описание: Unix-инструменты как основа для анализа данных.
🔗 https://datascienceatthecommandline.com/
Математика и теория вероятностей:
11. Теория вероятностей
👩🔬 Автор: Чернова Н. И.
Описание: Понятное введение в теорию вероятностей, основа для изучения математической статистики.
🔗 https://www.nsu.ru/mmf/tvims/chernova/tv/tv_nsu07.pdf
12. * Математическая статистика*
👩🔬 Автор: Чернова Н. И.
Описание: Продолжение курса по теории вероятностей (НГУ), покрывающее основы математической статистики: оценки параметров, проверка гипотез, регрессионный анализ.
🔗 https://www.nsu.ru/mmf/tvims/chernova/ms/ms_nsu07.pdf
13. * Курс дифференциального и интегрального исчисления (Том 1)*
👩🔬 Автор: Фихтенгольц Г. М.
Описание: Фундаментальный и классический учебник по основам математического анализа.
🔗 https://math.ru/lib/book/djvu/fichtengolz/f_1.djvu
14.*Векторные исчисления для инженеров*
👩🔬 Автор:Jeffrey R. Chasnov
🔗 https://math.ru/lib/book/djvu/fichtengolz/f_1.djvu
15 .*Theory—Theoretical & Mathematical Foundations ;
👩🔬Daniel A. Roberts, Sho Yaida, Boris Hanin
Описание: Эта книга предлагает теоретический подход к анализу глубинных нейросетей с практической значимостью
🔗https://arxiv.org/abs/2106.10165
📘 Еще больше книг здесь
@ai_machinelearning_big_data
#books #opensource #freebooks
❤7👍1