Forwarded from Machinelearning
Think Stats - это введение в теорию вероятностей и статистику для Python программистов и датасаентистов.
Каждая глава доступна в виде блокнота Jupyter ноутбука, в котором можно запускать код и решать упражнения ✔
▪ Книга
▪Github
@ai_machinelearning_big_data
#freebook #ml #probability #book #opensource #practice #книганедели
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6❤3
Работа в Data Science занимает первое место в рейтинге профессий с самым большим спросом на рынке до 2025 года по данным Всемирного экономического форума.Бизнесу нужны спецы, которые умеют создавать модели машинного обучения и нейросети.
Если вы хотите войти в эту профессию с нуля, не обязательно сразу покупать дорогие программы обучения — познакомиться с профессией и понять, подходит она вам или нет можно на бесплатном онлайн-вебинаре от karpov courses, который пройдёт 28 января в 19:00 по мск.
На бесплатном практическом вебинаре узнайте, кто такие ML-инженеры, какие навыки и инструменты необходимы для старта в профессии, а также с какими повседневными задачами сталкивается ML-инженер.
Переходите по ссылке, регистрируйтесь на вебинар и получите карьерный гайд в подарок: https://clc.to/erid_2W5zFGwBMyr
Реклама. ООО "КАРПОВ КУРСЫ". ИНН 7811764627.
Если вы хотите войти в эту профессию с нуля, не обязательно сразу покупать дорогие программы обучения — познакомиться с профессией и понять, подходит она вам или нет можно на бесплатном онлайн-вебинаре от karpov courses, который пройдёт 28 января в 19:00 по мск.
На бесплатном практическом вебинаре узнайте, кто такие ML-инженеры, какие навыки и инструменты необходимы для старта в профессии, а также с какими повседневными задачами сталкивается ML-инженер.
Переходите по ссылке, регистрируйтесь на вебинар и получите карьерный гайд в подарок: https://clc.to/erid_2W5zFGwBMyr
Реклама. ООО "КАРПОВ КУРСЫ". ИНН 7811764627.
👍3❤2
#machinelearning
@machinelearning_books
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10🔥3❤2
Forwarded from Анализ данных (Data analysis)
💥OpenAI только выпустили статью Competitive Programming with Large Reasoning Models
Примечательно, что o3 получил золотую медаль на IOI 2024 и рейтинг на Codeforces на уровне элитных программистов мира.
В целом, эти результаты указывают на то, что масштабирование обучения с подкреплением общего назначения, а не упор на специфичные для домена методы, предлагает надежный путь к современному ИИ в областях рассуждений, таких как олимпиадное программирование.
https://arxiv.org/abs/2502.06807
@data_analysis_ml
Примечательно, что o3 получил золотую медаль на IOI 2024 и рейтинг на Codeforces на уровне элитных программистов мира.
В целом, эти результаты указывают на то, что масштабирование обучения с подкреплением общего назначения, а не упор на специфичные для домена методы, предлагает надежный путь к современному ИИ в областях рассуждений, таких как олимпиадное программирование.
https://arxiv.org/abs/2502.06807
@data_analysis_ml
🔥9❤2🤡2🥰1
Forwarded from Machinelearning
1. Руководство по дистилляции от OpenAI
Руководство содержит подробное описание процесса передачи знаний от более крупной модели к компактной, c сохранением высокой производительности модели.
Основные аспекты, рассмотренные в руководстве:
- Сохранение выходных данных крупной модели: Создание набора данных, содержащего предсказания большой модели, которые будут использоваться для обучения меньшей модели.
- Оценка производительности моделей: Сравнительный анализ точности и эффективности как крупной, так и компактной моделей на основе различных метрик.
- Создание обучающих данных для компактной модели: Использование предсказаний крупной модели для генерации обучающего набора данных, способствующего эффективному обучению меньшей модели.
- Оценка дообученной компактной модели: Проверка производительности и точности компактной модели после процесса дистилляции для подтверждения соответствия требованиям.
2. Учебник по дистилляции знаний от PyTorch
Руководство от PyTorch, которое содержит практическое введение в технику передачи знаний для развёртывания моделей на устройствах с ограниченными вычислительными ресурсами.
Основные аспекты руководства:
- Извлечение скрытых представлений: В гайде показано, как получить промежуточные представления из обученной модели для дальнейшего использования.
- Модификация циклов обучения в PyTorch: Здесь рассматривается интеграция дополнительных функций в стандартные циклы обучения для эффективной передачи знаний.
- На примере показан процесс обучения компактной модели, с ипользованием предсказания более сложной модели в качестве ориентира.
Руководство содержит пошаговые инструкции и примеры кода, что делает его ценным ресурсом, если вы хотите научиться оптимизировать свои модели для использования в средах с ограниченными ресурсами.
▪Ссылка
3. Jetson Introduction to Knowledge Distillation от Nvidia
В данном руководстве рассматривается процесс передачи знаний от модели OpenCLIP (vision-language model) к модели ResNet18 для классификации на наборе данных STL10.
Особое внимание уделяется тому, как выбор данных, методы дистилляции и архитектура модели, влияют на итоговую точность.
Кроме того, обсуждаются методы профилирования и оптимизации моделей для их развёртывания на устройствах NVIDIA Jetson Orin Nano.
4. Учебник по дистилляции знаний от Keras
Подробно описывается концепция дистилляции знаний и ее применение в обработке медицинских изображений.
5. Руководство по дистилляции от
huggingface 🤗
Здесь показано, как выполнять дистилляцию знаний шаг за шагом на конкретном примере.
6. Дистилляция знаний для задач компьютерного зрения от huggingface
Здесь рассматривается, как сделать файнтюн ViT-модели в MobileNet с помощью API Trainer из Transformers.
#KnowledgeDistillation #Distillation #openai #keras #tutorial #course #freecourses #huggingface #Nvidia #pytorch
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1👍1
#курс #machinelearning
Please open Telegram to view this post
VIEW IN TELEGRAM
❤8👍1🥰1
@machinelearning_books
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4👍3🔥3
Forwarded from Machinelearning
Проект "Deepdive Llama3 from scratch" - расширенный форк гайд-репозитория по созданию LLama-3 c нуля шаг за шагом.
Исходный проект был переработан, проактуализирован, улучшен и оптимизирован для того, чтобы помочь всем желающим понять и освоить принцип реализации и детальный процесс ризонинга модели Llama3.
@ai_machinelearning_big_data
#AI #ML #LLM #Tutorial #Github
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6👍2