Машиннное обучение | Наука о данных Библиотека
16.9K subscribers
751 photos
10 videos
21 files
652 links
админ - @workakkk

@ai_machinelearning_big_data - Machine learning

@itchannels_telegram - 🔥лучшие ит-каналы

@pythonl - Python

@pythonlbooks- python книги📚

@datascienceiot - ml книги📚

№ 5037635661
Download Telegram
📖 Эта статья посвящена задаче токенизации, которая в данном контексте рассматривается как задача сжатия набора данных до определенного числа символов!

🌟 Исследователи доказали NP-полноту двух вариантов токенизации: первый — это прямая токенизация, при которой создается словарь для представления данных, второй — токенизация снизу вверх, где используется последовательность операций объединения элементов. Оба этих метода могут быть использованы для сжатия данных и определения минимального количества символов для представления данных в сокращенной форме.

🔗 Читать: *клик*

@machinelearning_books
Please open Telegram to view this post
VIEW IN TELEGRAM
👍63
Forwarded from Machinelearning
📌Роадмэп воспроизведения o1 от OpenAI с фокусом на RL.

Fundan University совместно с Shanghai AI Laboratory составили дорожную карту, как повторить возможности модели o1 от OpenAI.

Главное – обучение с подкреплением, есть 4 важных условия, которые нужно сделать, чтобы добиться такого же уровня, как у o1:

🟢Инициализация политики
🟢Разработка вознаграждения
🟢Поиск
🟢Обучение

Инициализация политики начинается с предварительного обучения LLM на больших текстовых датасетах. Они должны быть из разных областей и включать помимо классических задач NLP, примеры логического рассуждения, знаний о мире и демонстрировать паттерны навыка сравнения. Это позволит модели освоить базовое понимание языка и навыки рассуждения.

Последующая тонкая настройка на инструкциях преобразует модель из "предсказателя следующего токена" в полноценного агента, который может выполнять задачи. Тут важно добавить в процесс человекоподобных рассуждений через SFT или подсказки, чтобы научить модель исследовать пространство решений. Например, самооценке и самокоррекции, как это происходит у OpenAI o1.

Разработка вознаграждения дает модели четкую и понятную обратную связь не только в конце решения задачи, но и на промежуточных этапах. Правильно спроектированная система с использованием внутренних и внешних функций крайне важна, с ней модель учится лучше.

Поиск - решающий навык для генерации качественных решений на этапах обучения и тестирования. Использование методов Best-of-N, Beam Search, MCTS позволяет получить лучшие из возможных результатов. Например, MCTS подходит для более широкого исследования пространства решений.

Обучение использует данные, полученные в процессе поиска для улучшения политики модели. Чем больше параметров и объем поисковых данных - тем лучше производительность в итоге. По сути, обучение и поиск работают как "суперсила", способствуя развитию модели.

Выводы, сделанные в процессе исследования авторами сводятся к тому, что существующие открытые проекты, которые пытаются воспроизвести o1 - вариации такого метода обучения. Обучение с подкреплением - ключ к созданию "рассуждающей модели".

🟡Arxiv


@ai_machinelearning_big_data

#AI #ML #LLM #Paper #RL
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍11🔥63🤔2💘1
Mathematical Foundations of Machine Learning

📓 book

@machinelearning_books
👍9🔥54💘2
Lecture Notes on Principal Component Analysis by Laurenz Wiskott

📕 lectures

@datascienceiot
Please open Telegram to view this post
VIEW IN TELEGRAM
8👍1
⚡️ LLMs for AGI

В книге подробно обсуждаются фундаментальные проблемы которые необходимо решать для того, чтобы LLM достигли общего интеллекта человеческого уровня.

Отличное чтение для всех, кто интересуется исследованиями в области AGI.

📌 Читать
🔥83👏2🤔1🥴1
Forwarded from Machinelearning
🧠 Огромный гайд по по обучению с подкреплением

Свежее руководство по обучению с подкреплением, которое очень подробно объясняет всю теорию и детали реализации каждого алгоритма в этой области со множеством примеров и кодом.

Наслаждайтесь чтением)

📌 Читать

@ai_machinelearning_big_data


#ml #reinforcementlearning #rl #guiede
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
14👍4🔥21
Forwarded from Machinelearning
📕 Foundations of Large Language Models

Эта свежая бесплатная книга (и отлично чтиво на выходные) по LLM, которая только что появилась на arXiv.

Более 230 страница!

Книга состоит из четырех частей: предварительному обучению, генеративным моделям, промпт-инжинирингу и методам оптимизации LLM.

Это хорошее введение в большие языковые модели для разработчиков и студентов.

📌 Читать

@ai_machinelearning_big_data


#freebook #book #machinelearning #llm #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
8👍5🥱3🔥1
⚡️Легкий способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:

МАШИННОЕ ОБУЧЕНИЕ: t.iss.one/ai_machinelearning_big_data
C++ t.iss.one/cpluspluc
Python: t.iss.one/pythonl
Linux: t.iss.one/linuxacademiya
Хакинг: t.iss.one/linuxkalii
Devops: t.iss.one/DevOPSitsec
Data Science: t.iss.one/data_analysis_ml
Javascript: t.iss.one/javascriptv
C#: t.iss.one/csharp_ci
Java: t.iss.one/javatg
Базы данных: t.iss.one/sqlhub
Python собеседования: t.iss.one/python_job_interview
Мобильная разработка: t.iss.one/mobdevelop
Docker: t.iss.one/DevopsDocker
Golang: t.iss.one/Golang_google
React: t.iss.one/react_tg
Rust: t.iss.one/rust_code
ИИ: t.iss.one/vistehno
PHP: t.iss.one/phpshka
Android: t.iss.one/android_its
Frontend: t.iss.one/front
Big Data: t.iss.one/bigdatai
Собеседования МЛ: t.iss.one/machinelearning_interview
МАТЕМАТИКА: t.iss.one/data_math
Kubernets: t.iss.one/kubernetc
Разработка игр: https://t.iss.one/gamedev
Haskell: t.iss.one/haskell_tg
Физика: t.iss.one/fizmat

💼 Папка с вакансиями: t.iss.one/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.iss.one/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.iss.one/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.iss.one/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.iss.one/addlist/mzMMG3RPZhY2M2Iy

😆ИТ-Мемы: t.iss.one/memes_prog
🇬🇧Английский: t.iss.one/english_forprogrammers
🧠ИИ: t.iss.one/vistehno

🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.iss.one/addlist/BkskQciUW_FhNjEy
👍21