Машиннное обучение | Наука о данных Библиотека
16.9K subscribers
759 photos
10 videos
21 files
656 links
админ - @workakkk

@ai_machinelearning_big_data - Machine learning

@itchannels_telegram - 🔥лучшие ит-каналы

@pythonl - Python

@pythonlbooks- python книги📚

@datascienceiot - ml книги📚

№ 5037635661
Download Telegram
📌Machine Learning cheatsheet

Шпаргалка по ML от Стэнфорда, здесь даны метрики классификации, метрики регрессии, описывается кросс-валидация, регуляризация и не только

📎 Шпаргалка
🟡 PDF-версия

@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8🔥521
🔥 Крутая шпаргалка по машинному обучению!

В этой шпаргалке представлен весь мир машинного обучения. На ней выделены следующие ключевые направления:

Регрессия: OLS, SVM, Random Forest
Классификация: Naive Bayes, Decision Tree, нейронные сети
Кластеризация: K-Means, DBSCAN
Компьютерное зрение: CNN, YOLO, GANs
NLP/LLM: GPT, BERT, Word2Vec
Рекомендательные системы, прогнозирование

@machinelearning_books
👍113🔥2
Нейронки активно используются в различных областях: бизнес, здравоохранение, образование. Теперь внедрение ИИ в процессы – must have.

На днях Yandex B2B Tech представила новый сервис AI Assistant API. Внедрение API ускорит внедрение языковых моделей в бизнес-процессы более чем на 30%. Под капотом – YandexGPT 4, версия способна рассуждать и обрабатывать в четыре раза более длинные запросы и минимизирует долю ошибок и выдуманных фактов при ответа.

@machinelearning_books
51👍1
💥 Открытый курс от Nvidia: Self-Paced Training

Узнайте, как создать комплексный проект за восемь часов или как применить конкретную технологию Глубокого обучения или методику разработки.

https://learn.nvidia.com/en-us/training/self-paced-courses

@machinelearning_books
👍114🔥2
📌 Введение в глубокое обучение

🖥 Github

@machinelearning_library
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥8👍541
Forwarded from Machinelearning
📌Книга "Обучение с подкреплением: Основы"

Хороших книг по обучению с подкреплением (Reinforcement Learning, RL) уже выпущено достаточно, однако есть пробел между продвинутыми учебниками, в которых основное внимание уделяется одному или нескольким аспектам, и более общими книгами, в которых предпочтение отдается удобочитаемости, а не сложности.

Авторы книги, люди с опытом работы в CS и инжиниринга, подают тему RL в строгом и академическом стиле. Книга основана на конспектах лекций для углубленного курса бакалавриата, который преподается авторами в Тель-Авивском университете.

К этой книге дополнительно идет брошюра с упражнениями и экзаменационными вопросами, которые помогут освоить материал книги на практике. Эти упражнения разрабатывались на протяжении нескольких лет.

Математическая модель книги - Марковский процесс принятия решений (Markov Decision Process, MDP). Основное внимание уделяется: последовательному принятию решений, выбору действий, долгосрочному эффекту от этих действий и разница между немедленным вознаграждением и долгосрочной выгодой.

Тематически книга состоит из двух частей – "Планирование" и "Обучение".

▶️ Раздел "Планирование" - основы принятия оптимальных решений в условиях неопределенности в соответствии с MDP.

🟢Глава 2. Обоснование модели MDP и ее связь с другими моделями.
🟢Глава 3. Основные алгоритмические идеи в детерминированной постановке.
🟢Глава 4. Цепи Маркова, на которых основана MDP.
🟢Глава 5. Модель MDP с конечным горизонтом и фундаментальный подход к динамическому программированию.
🟢Глава 6. Дисконтированная настройка с бесконечным горизонтом.
🟢Глава 7. Эпизодическая настройка.
🟢Глава 8. Альтернативный подход к решению MDP с использованием формулировки линейного программирования.

▶️ Раздел "Обучение" - принятие решений, когда модель MDP неизвестна заранее.

🟠Глава 9. Описание и мотивация модели обучения и ее связь с альтернативами при принятии решений.
🟠Глава 10. Подход, основанный на моделях, при котором агент явно изучает модель MDP на основе своего опыта и использует ее для принятия решений по планированию.
🟠Глава 11. Альтернативный подход без использования моделей, при котором решения принимаются без явного построения модели.
🟠Глава 12. Изучение приблизительно оптимальных решений крупных задач с использованием аппроксимации функции стоимости.
🟠Глава 13 Решение крупных задач с использованием методов градиентной политики.
🟠Глава 14. Особый случай на примере игровых автоматов, как MDP с единым состоянием и неизвестными наградами, и онлайн-характер принятия решений.


🟡Сайт учебника
🟡Читать


@ai_machinelearning_big_data

#AI #ML #RL #MDP #Book
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥8👍74
Introducing the Cookbook 📕

Коллекция гайдов и руководств с открытым исходным кодом для создания блюд с помощью AI SDK.

📚 Книги

@machinelearning_library
Please open Telegram to view this post
VIEW IN TELEGRAM
👍54🔥2
Gaussian Processes for Machine Learning

📚 Книги

@machinelearning_library
Please open Telegram to view this post
VIEW IN TELEGRAM
8👍7🔥2
⚡️Легкий способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:

МАШИННОЕ ОБУЧЕНИЕ: t.iss.one/ai_machinelearning_big_data
C++ t.iss.one/cpluspluc
Python: t.iss.one/pythonl
Linux: t.iss.one/linuxacademiya
Хакинг: t.iss.one/linuxkalii
Devops: t.iss.one/DevOPSitsec
АНАЛИЗ Данных: t.iss.one/data_analysis_ml
Javascript: t.iss.one/javascriptv
C#: t.iss.one/csharp_ci
Java: t.iss.one/javatg
Базы данных: t.iss.one/sqlhub
Python собеседования: t.iss.one/python_job_interview
Мобильная разработка: t.iss.one/mobdevelop
Docker: t.iss.one/DevopsDocker
Golang: t.iss.one/golang_interview
React: t.iss.one/react_tg
Rust: t.iss.one/rust_code
ИИ: t.iss.one/vistehno
PHP: t.iss.one/phpshka
Android: t.iss.one/android_its
Frontend: t.iss.one/front
Big Data: t.iss.one/bigdatai
Собеседования МЛ: t.iss.one/machinelearning_interview
МАТЕМАТИКА: t.iss.one/data_math
Kubernets: t.iss.one/kubernetc
Разработка игр: https://t.iss.one/gamedev

💼 Папка с вакансиями: t.iss.one/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.iss.one/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.iss.one/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.iss.one/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.iss.one/addlist/mzMMG3RPZhY2M2Iy

😆ИТ-Мемы: t.iss.one/memes_prog
🇬🇧Английский: t.iss.one/english_forprogrammers
🧠ИИ: t.iss.one/vistehno

🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.iss.one/addlist/BkskQciUW_FhNjEy
4
📕 Cache-Oblivious Algorithms and Data Structures

🎓 Читать

@machinelearning_books
8👍2
⚡️ Изучите создание промтов с помощью интерактивного руководства Anthropic по разработке подсказок.

👉 Ссылка на Google sheet

@machinelearning_books
11👍5🔥2💩2
Calculus 1 for Honours Mathematics

🔗 Book

@machinelearning_books
👍63🔥1
🖥 t.iss.one/haskell_tg - Haskell входит в число наиболее востребованных функциональных языков программирования.

В нашем новом канале, вы найдете множество уроков, книг и гайдов для погружения в этот мощный язык с нуля.

Отличная возможность не только выучить новый язык, но и возможность прокачать свои навыки программирования.

t.iss.one/haskell_tg - стоит подписаться!
Please open Telegram to view this post
VIEW IN TELEGRAM
😁4👍21
🔥 В репозитории на GitHub с более чем 12 тысячами звезд содержится интерактивная Google-таблица.

В нее нужно вставить свой токен от модели Claude, после чего можно приступить к обучению, выполняя уроки и задания. Помимо стандартных советов о выборе профессии, учебник охватывает такие важные темы, как:

— Форматирование результатов;
— Поэтапный анализ (Pre-cognition);
— Метод Few-shot-промптов;
— Проверка на ложные выводы и многое другое.

Ссылки для доступа:
Github
Docs

@machinelearning_books
👍63🔥2
🔥 Огромная бесплатная книга по SQL! (500+ страниц!)

🔗 Ссылка: *клик*

@sqlhub
Please open Telegram to view this post
VIEW IN TELEGRAM
10👍5🔥3
В «Золотом Яблоке» можно создавать кастомные подарочные карты с дизайном от YandexART 🎨

«Золотое Яблоко» внедрило Yandex AI Rendering Technology — диффузионную нейросеть, которая создаёт изображения в ответ на текстовые запросы. Теперь она генерирует уникальные подарочные карты по запросам покупателей.
Пока генерация работает на сайте, а в декабре заработает и в приложении. С безопасностью, кстати, всё в порядке: сервис не делает дизайны на спорные темы.

Нейросеть можно использовать и в других сценариях:
генерировать материалы для сайта или брендбука;
придумывать маскотов;
создавать фирменные иконки и логотипы.

Тем, кто собирается решать с помощью нейросетей бизнес‑задачи, рекомендуем попробовать Playground в консоли Yandex Cloud.
🥴43👍3🔥3