Forwarded from Machinelearning
Книга “Understanding Deep Learning” посвящена идеям и принципам, лежащим в основе глубокого обучения. Подача материала построена таким образом, чтобы читатель мог понять материал настолько эффективно, насколько это возможно. Для читателей, желающих углубиться в изучение, в каждой главе приведены соответствующие задачи, записные книжки по Python и подробные справочные материалы.
В первой части книги представлены модели глубокого обучения и обсуждается, как их обучать, измерять их производительность и улучшать эту производительность.
В следующей части рассматриваются архитектуры, которые специализируются на изображениях, тексте и графических данных. Для свободного понимания этих двух глав требуется понимать принципы линейной алгебры, матанализа и теории вероятностей.
Последующие части книги посвящены генеративным моделям и методике обучения с подкреплением. Эти главы требуют больших знаний в области теории вероятностей и математического анализа.
В последней главе обсуждается этика искусственного интеллекта и призыв к практикующим инженерам задуматься о моральных последствиях своей работы.
Автор книги: Simon J. D. Prince - почетный профессор информатики в Университете Bath (Великобритания) , со-автор более 80 опубликованных исследований в области ML.
Научный сотрудник, специализирующийся на искусственном интеллекте и глубоком обучении, он руководил группами ресерча в Anthropics Technologies Ltd, Borealis AI и других компаниях.
Дополнительно, на отдельном сайте книги, читателям доступны:
@ai_machinelearning_big_data
#AI #ML #Book
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤12⚡2👍2🤣2
📚 Data Scientist Handbook 2024
Открытая книга для дата-сайентиста 2024
В этом гайде собрано множество полезных ресурсов, которые помогут прокачать различные навыки. Среди собранных ресурсов есть как платные, так и бесплатные.
▪ Книга
@machinelearning_books
Открытая книга для дата-сайентиста 2024
В этом гайде собрано множество полезных ресурсов, которые помогут прокачать различные навыки. Среди собранных ресурсов есть как платные, так и бесплатные.
▪ Книга
@machinelearning_books
👍9❤2🤮2🎉1
Python_scraping_2.pdf
934.7 KB
Шпаргалки в PDF по скрапингу/парсингу данных
👍8❤3🔥1
Forwarded from Machine learning Interview
Собираетесь на собеседование на позицию Python Developer? Тогда обратите внимание на эту шпаргалку, где собраны ответы на более чем 100 вопросов, которые часто задают на интервью. Разработчики тщательно подготовили эти материалы, и уверены, что они помогут вам лучше подготовиться к вопросам.
Эти вопросы покрывают практически все темы Python + затрагивают азы Computer Science: алгоритмы, структуры данных и т.д.
@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍12❤4🔥1
📚 Анализ данных на компьютере
Описание: В учебном пособии без лишнего формализма излагаются основные идеи и понятия математической статистики, необходимые на практике для анализа данных.
📌Книга
#ru #АнализДанных #Статистика
Описание: В учебном пособии без лишнего формализма излагаются основные идеи и понятия математической статистики, необходимые на практике для анализа данных.
📌Книга
#ru #АнализДанных #Статистика
❤4🔥4👍1
teorija_statistiki-shpargalki.pdf
240 KB
⚡️ Шпаргалка по статистике
Если у вас предстоят собеседования или экзамены по статистике в университете, вот полезная полная шпора. В ней рассмотрены ключевые понятия, такие как выборка, распределение, мода, медиана и другие.
Также приведено практическое занятие по статистическому наблюдению на примере производственной компании.
@machinelearning_books
Если у вас предстоят собеседования или экзамены по статистике в университете, вот полезная полная шпора. В ней рассмотрены ключевые понятия, такие как выборка, распределение, мода, медиана и другие.
Также приведено практическое занятие по статистическому наблюдению на примере производственной компании.
@machinelearning_books
🔥8👎7❤2🤡2👍1