📢 OpenAI опубликовала официальный Realtime Prompting Guide — подробное руководство по работе с новым моделью gpt-realtime для голос-голос взаимодействия в API.
🧠 В отличие от текстовых моделей, gpt-realtime требует особых техник промптинга. Вот ключевые:
● Делите системный промпт на секции: роль, тон, контекст, правила, инструменты, поток диалога, безопасность
● Чётко задавайте роль и цель, чтобы модель понимала свою задачу и критерии успеха
● Управляйте речью напрямую: длина ответа (2–3 предложения), темп речи, жёсткая языковая блокировка
● Добавляйте примеры фраз для стиля и правило вариативности, чтобы избежать повторов
● Указывайте правильные произношения сложных терминов, цифры и коды — по символам, с подтверждением
● Убирайте неоднозначности: давайте определения, устраняйте конфликты, используйте критику для улучшения промпта
● Для непонятного аудио — отвечать только на чёткий ввод, в том же языке запрашивать уточнение
● Точно описывайте работу инструментов: когда использовать, когда нет, добавляйте преамбулы или запрос подтверждения
● Если роли разделены на «мыслителя» и «отвечающего» — требуйте перефразировать мысль в короткий живой ответ для речи
● Организуйте диалог как состояния с целями, инструкциями, критериями выхода и примерами
● Для сложных сценариев используйте JSON state machine или динамические правила и списки инструментов
● Определяйте условия эскалации (например, 2 сбоя инструмента или 3 подряд «нет ввода»), при которых модель должна коротко и нейтрально передать разговор человеку
⚡️ Этот гайд даёт системный подход к промптингу в реальном времени и помогает строить надёжных голосовых ассистентов на базе gpt-realtime.
https://cookbook.openai.com/examples/realtime_prompting_guide
🧠 В отличие от текстовых моделей, gpt-realtime требует особых техник промптинга. Вот ключевые:
● Делите системный промпт на секции: роль, тон, контекст, правила, инструменты, поток диалога, безопасность
● Чётко задавайте роль и цель, чтобы модель понимала свою задачу и критерии успеха
● Управляйте речью напрямую: длина ответа (2–3 предложения), темп речи, жёсткая языковая блокировка
● Добавляйте примеры фраз для стиля и правило вариативности, чтобы избежать повторов
● Указывайте правильные произношения сложных терминов, цифры и коды — по символам, с подтверждением
● Убирайте неоднозначности: давайте определения, устраняйте конфликты, используйте критику для улучшения промпта
● Для непонятного аудио — отвечать только на чёткий ввод, в том же языке запрашивать уточнение
● Точно описывайте работу инструментов: когда использовать, когда нет, добавляйте преамбулы или запрос подтверждения
● Если роли разделены на «мыслителя» и «отвечающего» — требуйте перефразировать мысль в короткий живой ответ для речи
● Организуйте диалог как состояния с целями, инструкциями, критериями выхода и примерами
● Для сложных сценариев используйте JSON state machine или динамические правила и списки инструментов
● Определяйте условия эскалации (например, 2 сбоя инструмента или 3 подряд «нет ввода»), при которых модель должна коротко и нейтрально передать разговор человеку
⚡️ Этот гайд даёт системный подход к промптингу в реальном времени и помогает строить надёжных голосовых ассистентов на базе gpt-realtime.
https://cookbook.openai.com/examples/realtime_prompting_guide
❤7👍1🔥1
📌Приглашаем вас на три бесплатных вебинара курса «MLOps»
💎Вебинар №1: «MLFlow - контроль над ML-экспериментами»
⏰ 4 сентября в 20:00 мск
🔹На вебинаре:
• Узнаете как проводить ML эксперименты и главное как их контролировать;
• Поймете что такое MLFlow и какие компоненты он содержит;
• Разберём основные возможности MLFlow: трекинг экспериментов, управление моделями и воспроизводимость;
• Проведём живую демонстрацию, где шаг за шагом внедрим MLFlow в ML-проект.
💎Вебинар №2: «Вывод ML моделей в промышленную среду на примере онлайн-скоринга»
⏰ 11 сентября в 20:00 мск
🔹На вебинаре:
• Направления развития в DataScience
• Построение модели машинного обучения на примере скоринга
• Интеграция модели в промышленную среду на примере API на Flas
💎Вебинар №3: «Serverless подход в MLOps для небольших ML-проектов»
⏰ 18 сентября в 18:00 мск
🔹На вебинаре:
• Преимущества serverless подхода для развертывания ML-моделей и когда его стоит использовать.
• Развертывание ML-модели с помощью Yandex Cloud: Object Storage и Cloud Functions.
• Создание и тестирование API для инференса модели.
🎁Участники вебинаров получат подарки на почту🎁
Регистрация на вебинары ➡️ OTUS.RU
Реклама. ООО "ОТУС ОНЛАЙН-ОБРАЗОВАНИЕ", ИНН: 9705100963
💎Вебинар №1: «MLFlow - контроль над ML-экспериментами»
⏰ 4 сентября в 20:00 мск
🔹На вебинаре:
• Узнаете как проводить ML эксперименты и главное как их контролировать;
• Поймете что такое MLFlow и какие компоненты он содержит;
• Разберём основные возможности MLFlow: трекинг экспериментов, управление моделями и воспроизводимость;
• Проведём живую демонстрацию, где шаг за шагом внедрим MLFlow в ML-проект.
💎Вебинар №2: «Вывод ML моделей в промышленную среду на примере онлайн-скоринга»
⏰ 11 сентября в 20:00 мск
🔹На вебинаре:
• Направления развития в DataScience
• Построение модели машинного обучения на примере скоринга
• Интеграция модели в промышленную среду на примере API на Flas
💎Вебинар №3: «Serverless подход в MLOps для небольших ML-проектов»
⏰ 18 сентября в 18:00 мск
🔹На вебинаре:
• Преимущества serverless подхода для развертывания ML-моделей и когда его стоит использовать.
• Развертывание ML-модели с помощью Yandex Cloud: Object Storage и Cloud Functions.
• Создание и тестирование API для инференса модели.
🎁Участники вебинаров получат подарки на почту🎁
Регистрация на вебинары ➡️ OTUS.RU
Реклама. ООО "ОТУС ОНЛАЙН-ОБРАЗОВАНИЕ", ИНН: 9705100963
❤3
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
Компания объявила о покупке Statsig - платформы, специализирующейся на продуктовой аналитике и A/B-тестировании. Ее основатель и CEO Statsig, Виджая Раджи, будет назначен на пост технического директора по приложениям (CTO of Applications) в OpenAI. Он возглавит продуктовую инженерию для ChatGPT и Codex. Вся команда Statsig присоединится к OpenAI, однако сама платформа продолжит работать независимо и обслуживать текущих клиентов.
openai.com
OpenAI анонсировала новые функции безопасности для ChatGPT для на защиты молодых пользователей и помощи в кризисных ситуациях. Первая новинка - система автоматической маршрутизации: при обнаружении признаков острого психологического стресса разговор будет передаваться "думающим" моделям. Они обучены с помощью метода Deliberative Alignment и дают более медленные и взвешенные ответы. Обновление планируется выпустить в течение 120 дней.
В ближайший месяц также появятся функции родительского контроля. Родители смогут связывать свои аккаунты с аккаунтами подростков от 13 лет, чтобы устанавливать ограничения и получать оповещения, если система зафиксирует у ребенка признаки кризисного состояния.
openai.com
В Швейцарии состоялся запуск Apertus — национальной LLM с открытым исходным кодом. Проект, разработанный консорциумом государственных институтов, позиционируется как альтернатива коммерческим моделям. Apertus полностью прозрачен: разработчики опубликовали не только саму модель, но и исходный код процесса обучения, документацию и использованные наборы данных.
Модель обучена на 15 трлн. токенов и поддерживает более 1000 языков, 40% данных - не на английском. Apertus создавалась с учетом швейцарских и европейских законов о защите данных и авторском праве, что делает ее привлекательной для местного бизнеса. Модель доступна на Hugging Face в 2 версиях: 8 и 70 млрд. параметров.
swissinfo.ch
Dolby Vision 2 - следующее поколение формата HDR, который постепенно заменит Dolby Vision и Dolby Vision IQ. Особенность новой технологии - использование ИИ для динамической подстройки качества изображения в реальном времени.
Система Content Intelligence будет анализировать сцены, учитывать условия освещения в комнате и с помощью машинного обучения корректировать картинку "на лету". Например, функция Precision Black улучшит детализацию в темных сценах, а Light Sense адаптирует изображение под окружающую среду.
Первым производителем, который внедрит Dolby Vision 2, станет Hisense, а первым чипом со встроенной поддержкой нового стандарта будет MediaTek Pentonic 800.
dolby.com
ЦЕРН применила методы машинного обучения для поиска редких событий - распада бозона Хиггса на два charm-кварка. Эта задача критически важна для проверки Стандартной модели, так как взаимодействие бозона с легкими кварками, из которых состоит обычная материя, до сих пор экспериментально не подтверждено.
Основная сложность заключалась в идентификации так называемых «джетов», порожденных именно charm-кварками. Для этого исследователи использовали графовую нейронную сеть, обученную на сотнях миллионов симуляций, а для отделения реальных событий от фонового шума была задействована сеть, архитектурно схожая с ChatGPT.
В результате анализа данных, собранных на БАК, удалось установить самые строгие на сегодняшний день ограничения на силу взаимодействия бозона Хиггса с charm-кварком. Это значительный шаг в понимании механизма, который придает массу фундаментальным частицам.
scitechdaily.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6👍5
🤯 Apple и Оксфорд сделали ИИ умнее в 6,5 раза
Вместо того чтобы просто "угадывать ответ", агент теперь сам задаёт правильные вопросы.
Успешность выросла с 14% до 91%, и это работает на уже существующих моделях — без дообучения.
🔄 Принцип:
1. Агент придумывает возможные решения.
2. Считает, какой вопрос сузит список максимально.
3. Задаёт только один лучший вопрос.
4. Фильтрует варианты и повторяет цикл, пока не найдёт ответ.
⚡ Зачем это нужно:
- Бизнесу → меньше ошибок, быстрее диагностика, точнее персонализация.
- Разработчикам → фреймворк можно использовать уже сегодня.
- Учёным → победа информационной теории: точные вопросы эффективнее любых эвристик.
#AI #Apple #Oxford #LLM #Agents
https://arxiv.org/pdf/2508.21184
Вместо того чтобы просто "угадывать ответ", агент теперь сам задаёт правильные вопросы.
Успешность выросла с 14% до 91%, и это работает на уже существующих моделях — без дообучения.
🔄 Принцип:
1. Агент придумывает возможные решения.
2. Считает, какой вопрос сузит список максимально.
3. Задаёт только один лучший вопрос.
4. Фильтрует варианты и повторяет цикл, пока не найдёт ответ.
⚡ Зачем это нужно:
- Бизнесу → меньше ошибок, быстрее диагностика, точнее персонализация.
- Разработчикам → фреймворк можно использовать уже сегодня.
- Учёным → победа информационной теории: точные вопросы эффективнее любых эвристик.
#AI #Apple #Oxford #LLM #Agents
https://arxiv.org/pdf/2508.21184
👍7🔥3💩2😁1
Forwarded from Machinelearning
400 страниц про всё, что нужно знать об агентных системах. Автор — senior engineer в Google, выложил драфт для открытого ревью.
📖 В книге:
- продвинутые техники промптинга
- паттерны для мульти-агентов
- использование инструментов и MCP
- практические примеры с кодом
⚡ По сути, это полный справочник по построению умных агентов. Must-read для разработчиков AI.
@ai_machinelearning_big_data
#AI #Agents #Google #OpenSource #freebook
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9❤4🔥2💩2
Forwarded from Machinelearning
OpenAI опубликовали исследование о причинах галлюцинации LLM.
Галлюцинации - это не мистический сбой в сознании ИИ, а вполне предсказуемый побочный эффект его обучения.
Представьте, что перед моделью стоит задача бинарной классификации - определить, является ли предложенное утверждение корректным или нет. Математическая выкладка в исследовании проста: уровень ошибок генерации как минимум в 2 раза превышает уровень ошибок классификации. Если модель не способна надежно отличить факт от вымысла, она неизбежно будет этот вымысел генерировать.
Даже на идеально чистых данных статистические цели обучения подталкивают модель к генерации ошибок. Особенно это касается фактов, которые редко встречаются в обучающей выборке.
В работе вводится понятие
singleton rate — доля фактов, которые появились в данных лишь один раз. Теоретический расклад показывает, что уровень галлюцинаций модели будет как минимум равен этой доле. Проще говоря, если 20% фактов о днях рождения в датасете встретились единожды, модель будет выдумывать дни рождения как минимум в 20% случаев.
Модель DeepSeek-V3, на просьбу назвать день рождения одного из авторов статьи, трижды выдала неверные даты:
03-07, 15-06 и 01-01. Ни одна из них не была даже близка к правильной (осенью). В другом тесте, где нужно было сосчитать количество букв
D в слове DEEPSEEK, та же DeepSeek-V3 выдавала 2 или 3, а модели компании Марка Цукерберга и Claude 3.7 Sonnet доходили до 6 и 7. При этом базовые модели после претрейна часто показывают отличную калибровку. Например, у предобученной GPT-4 ожидаемая ошибка калибровки составляла всего 0.007, что говорит о высокой статистической адекватности ее предсказаний.
Ответ на этот вопрос - в системе оценки. Большинство современных бенчмарков поощряют угадывание. Модели, по сути, постоянно находятся в режиме сдачи экзамена, где за правильный ответ дают 1 балл, а за пустой бланк или ответ
я не знаю - 0. В такой системе оптимальная стратегия при неуверенности - только угадать. Любой шанс на правильный ответ лучше, чем гарантированный ноль.Эту гипотезу подтвердили анализом популярных оценочных наборов.
В GPQA, MMLU-Pro, Omni-MATH, SWE-bench и HLE используется строго бинарная система оценки (правильно/неправильно). Возможности получить частичный балл за честное признание в незнании там просто нет. Из 10 рассмотренных в исследовании популярных бенчмарков только один, WildBench, присуждает частичные баллы за ответы формата
я не знаю. Остальные же фактически наказывают модель за отказ галлюцинировать, создавая эпидемию штрафов за неуверенность и поощряя ее выдавать правдоподобную ложь.OpenAI предлагает встраивать явные целевые уровни уверенности в рубрики, вводить поведенческую калибровку и оценивать модели по секциям с разными порогами уверенности.
Еще рекомендуют включают мониторинг
singleton-rate на корпусе, измерение вероятности важных ответов, комбинирование RAG с верификацией фактов и изменение лидербордов чтобы ответы я не знаю не штрафовались автоматически.@ai_machinelearning_big_data
#AI #ML #LLM #Research #OpenAI
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5❤3🤔1
📊 Новое поколение баз данных для ИИ-агентов
Когда LLM-агенты работают с БД, они не делают один большой запрос. Вместо этого они засыпают систему тысячами мелких пробных запросов: проверяют структуру, ищут связи, тестируют планы. Это явление получило название agentic speculation. Итог — колоссальный перерасход ресурсов.
🆕 Исследователи предлагают «agent-first database» — базу, спроектированную с учётом поведения агентов.
🔑 Как это работает:
- Агент отправляет не просто SQL-запрос, а пробу с брифом: какая цель, на каком этапе он сейчас, какая нужна точность и что в приоритете.
- База может дать приближённый ответ, если данных уже достаточно, вместо того чтобы тратить ресурсы на полный расчёт.
- Запросы поддерживают семантический поиск по таблицам и строкам, что в SQL выразить сложно.
⚙️ Внутренние механизмы:
- Sleeper agents подсказывают лучшие join’ы, объясняют пустые результаты и оценивают стоимость запросов.
- Оптимизатор проб объединяет похожие запросы, кэширует частичные результаты и выдаёт быстрые ответы, когда «достаточно сигнала».
- Agentic memory хранит знания, которые можно переиспользовать в будущем.
- Общий менеджер транзакций позволяет быстро пробовать разные сценарии («what-if») без лишних затрат.
📌 Вывод: традиционный SQL не подходит для эпохи LLM. Нужны базы, которые понимают стратегию агента, сокращают лишние шаги и экономят ресурсы.
🔗 Paper: arxiv.org/abs/2509.00997
#AI #Databases #LLM #Agents
Когда LLM-агенты работают с БД, они не делают один большой запрос. Вместо этого они засыпают систему тысячами мелких пробных запросов: проверяют структуру, ищут связи, тестируют планы. Это явление получило название agentic speculation. Итог — колоссальный перерасход ресурсов.
🆕 Исследователи предлагают «agent-first database» — базу, спроектированную с учётом поведения агентов.
🔑 Как это работает:
- Агент отправляет не просто SQL-запрос, а пробу с брифом: какая цель, на каком этапе он сейчас, какая нужна точность и что в приоритете.
- База может дать приближённый ответ, если данных уже достаточно, вместо того чтобы тратить ресурсы на полный расчёт.
- Запросы поддерживают семантический поиск по таблицам и строкам, что в SQL выразить сложно.
⚙️ Внутренние механизмы:
- Sleeper agents подсказывают лучшие join’ы, объясняют пустые результаты и оценивают стоимость запросов.
- Оптимизатор проб объединяет похожие запросы, кэширует частичные результаты и выдаёт быстрые ответы, когда «достаточно сигнала».
- Agentic memory хранит знания, которые можно переиспользовать в будущем.
- Общий менеджер транзакций позволяет быстро пробовать разные сценарии («what-if») без лишних затрат.
📌 Вывод: традиционный SQL не подходит для эпохи LLM. Нужны базы, которые понимают стратегию агента, сокращают лишние шаги и экономят ресурсы.
🔗 Paper: arxiv.org/abs/2509.00997
#AI #Databases #LLM #Agents
👍5🤔3
Forwarded from Machinelearning
Аналитики считают: если бы Google выделила бизнес по TPU-чипам вместе с лабораторией DeepMind, то объединённая компания могла бы стоить около $900 млрд.
Пока этого не произойдёт, но сама цифра показывает масштаб.
- 6-е поколение Trillium уже пользуется высоким спросом
- 7-е поколение Ironwood станет первым TPU, ориентированным на крупномасштабный inference — этап, когда модели реально используются после обучения
Anthropic и xAI активно рассматривают переход на TPU, так как улучшенная поддержка через JAX делает их использование на больших масштабах заметно проще.
Google уже заключила сделку с Fluidstack (Нью-Йорк) и ведёт переговоры с другими облачными провайдерами, которые раньше работали в основном с NVIDIA (например, Crusoe и **CoreWeave**).
В итоге Google выходит в прямую конкуренцию с NVIDIA — и впервые за долгое время у «зелёного гиганта» появился серьёзный соперник.
@ai_machinelearning_big_data
#google #nvidia #tpu #deeplearning
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4🔥2
📚 Новая работа исследователей сравнивает два способа подключения LLM к учебным материалам, чтобы их ответы были точнее и полезнее.
Обычные LLM часто дают неверные или устаревшие факты. Решение - Retrieval Augmented Generation (RAG), где модель ищет ответы в курсах и книгах вместо «догадок».
🔹 Метод 1: vector search
- Ищет текстовые фрагменты, похожие по смыслу на вопрос.
- Быстрый, дешёвый, отлично подходит для фактов и коротких запросов.
🔹 Метод 2: graph search
- Строит сеть связанных идей из текста.
- Помогает отвечать на вопросы про широкие темы и делать подробные объяснения.
- Но работает медленнее и требует в 10–20 раз больше ресурсов.
Для эксперимента авторы создали датасет EduScopeQA (3 176 вопросов по истории, литературе, науке и компьютерным наукам). Тестировали даже на изменённых учебниках, чтобы проверить, смогут ли модели избежать устаревших знаний.
📊 Результаты:
- Vector search - лучше для коротких, фактологических вопросов.
- GraphRAG Global - лучший для общих тем и широких вопросов.
- GraphRAG Local - сильнее всего, когда учебники длинные и подробные.
Итог: исследователи собрали routing system, которая отправляет каждый вопрос к оптимальному методу. Это позволяет сохранять точность и не тратить лишние ресурсы на графовый поиск.
📝 Paper: https://arxiv.org/abs/2509.07846v1
#LLM #RAG #Education #VectorSearch #GraphSearch #AIResearch
Обычные LLM часто дают неверные или устаревшие факты. Решение - Retrieval Augmented Generation (RAG), где модель ищет ответы в курсах и книгах вместо «догадок».
🔹 Метод 1: vector search
- Ищет текстовые фрагменты, похожие по смыслу на вопрос.
- Быстрый, дешёвый, отлично подходит для фактов и коротких запросов.
🔹 Метод 2: graph search
- Строит сеть связанных идей из текста.
- Помогает отвечать на вопросы про широкие темы и делать подробные объяснения.
- Но работает медленнее и требует в 10–20 раз больше ресурсов.
Для эксперимента авторы создали датасет EduScopeQA (3 176 вопросов по истории, литературе, науке и компьютерным наукам). Тестировали даже на изменённых учебниках, чтобы проверить, смогут ли модели избежать устаревших знаний.
📊 Результаты:
- Vector search - лучше для коротких, фактологических вопросов.
- GraphRAG Global - лучший для общих тем и широких вопросов.
- GraphRAG Local - сильнее всего, когда учебники длинные и подробные.
Итог: исследователи собрали routing system, которая отправляет каждый вопрос к оптимальному методу. Это позволяет сохранять точность и не тратить лишние ресурсы на графовый поиск.
📝 Paper: https://arxiv.org/abs/2509.07846v1
#LLM #RAG #Education #VectorSearch #GraphSearch #AIResearch
👍7❤3🔥1
Forwarded from Machinelearning
Google Research придумали новый способ сделать большие языковые модели быстрее и дешевле.
Что это такое:
Сначала отвечает маленькая модель. Если задача слишком сложная - подключается большая. Так экономятся ресурсы, но качество может прыгать.
Маленькая модель угадывает сразу несколько слов вперёд. Большая быстро проверяет данные и подтверждает. Скорость выше, но большая модель всё равно тратит много ресурсов.
Это комбинация: маленькая модель иногда отвечает полностью сама, а иногда используется как ускоритель для большой. В итоге получаем меньше затрат, больше скорости и то же качество.
- быстрее, чем обычная спекулятивная декодировка
- дешевле и качественнее, чем каскады
- удобнее настраивать баланс «скорость ↔ качество»
При том же уровне качества, что и у спекулятивной декодировки, новый метод работает быстрее (генерирует больше токенов за один вызов большой модели).
А в задачах математических рассуждений получен явный апгрейд по скорости при сохранении или даже улучшении качества.
LLM всё чаще используются в поиске, чатах, ассистентах. Чтобы они реально были полезными, их нужно ускорять и удешевлять. *Speculative cascades* помогают это сделать без потери качества.
🔗 Подробнее: https://research.google/blog/speculative-cascades-a-hybrid-approach-for-smarter-faster-llm-inference/
@ai_machinelearning_big_data
#AI #LLM #Inference #SpeculativeDecoding #Cascades #GoogleResearch
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4👍1
Forwarded from Machinelearning
Anthropic описывает, как правильно создавать инструменты (tools) для AI-агентов: так, чтобы они были максимально полезными, эффективными и надёжными. Особый акцент сделан на том, как использовать самих агентов для прототипирования, тестирования и оптимизации инструментов.
Как писать эффективные инструменты для агентов
- Делай быстрые прототипы и сразу проверяй, как агент с ними работает.
- Тестируй на реальных сценариях, а не на абстрактных примерах.
- Анализируй логи и поведение агента, чтобы находить ошибки и непонятные места.
- Избегай дублирования: один инструмент должен выполнять одну чёткую задачу.
- Используй понятные имена и структуры (`machinelearning_create_task`, `mla_list_users`).
- Возвращай только нужные данные, не перегружай ответ лишним. Добавляй фильтрацию и пагинацию.
- Пиши описания так, чтобы их понял даже человек, который не в теме: чётко, без двусмысленностей, с примерами входа и выхода.
Что это дает:
- Улучшает способность AI-агентов решать реальные задачи.
- Минимизирует ошибки: неверное использование инструментов, лишние токены, избыточные вызовы.
- Повышает надёжность и предсказуемость поведения агентов.
- Упрощает масштабирование — добавление новых инструментов и задач.
@ai_machinelearning_big_data
#Anthropic #claude #aiagents #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5👍2