Машиннное обучение | Наука о данных Библиотека
16.9K subscribers
744 photos
10 videos
21 files
646 links
админ - @workakkk

@ai_machinelearning_big_data - Machine learning

@itchannels_telegram - 🔥лучшие ит-каналы

@pythonl - Python

@pythonlbooks- python книги📚

@datascienceiot - ml книги📚

№ 5037635661
Download Telegram
Forwarded from Machinelearning
📌 США могут ускорить гонку ИИ, вложив в "Манхэттенский проект ИИ" ресурсы, сопоставимые с программой «Аполлон».

Идея «Манхэттенского проекта для ИИ», витавшая последние месяцы на самом высоком уровне в США, кажется, начинает обретать очертания. Но за громкими сравнениями обычно теряется суть: а что это значит на практике?

Аналитики из Epoch AI решили посчитать, какой вычислительный монстр может появиться, если американское правительство консолидирует ресурсы частного сектора и вложит в проект долю ВВП, сопоставимую с пиком лунной программы.

Epoch AI - некоммерческий исследовательский институт, который изучает траекторию развития искусственного интеллекта, анализирует тренды в вычислениях, данных и алгоритмах, чтобы прогнозировать влияние ИИ на экономику и общество.


🟡Картина получается масштабная.

Расчеты показывают, что к концу 2027 года такой проект мог бы обеспечить тренировочный прогон модели с вычислительной мощностью порядка 2 × 10²⁹ FLOP.

Чтобы понять масштаб: это примерно в 10 000 раз больше, чем потребовалось для обучения GPT-4. По сути, это рывок, который по текущим прогнозам должен был случиться на несколько лет позже.

Финансирование на уровне программы «Аполлон» (около 0.8% ВВП или 244 млрд. долларов сегодня) позволило бы закупить и объединить в один кластер эквивалент 27 миллионов NVIDIA H100. Эта цифра, кстати, совпадает с экстраполяцией текущих доходов NVIDIA от продаж в США.

🟡А хватит ли на это электричества?

27 миллионов GPU потребуют около 7.4 ГВт мощности - это больше, чем потребляет весь город Нью-Йорк. Оказывается, это не главная преграда. Аналитики говорят, что к 2027 году в США и так планируется ввод 8.8 ГВт за счет новых газовых электростанций, значительная часть которых уже предназначена для дата-центров.

При наличии политической воли и используя законодательные инструменты, правительство США сможет сконцентрировать эти мощности в одном месте, так что энергия не станет узким местом.

🟡Разумеется, у сценария есть свои «но».

Геополитическая напряженность, например, вокруг Тайваня, может сорвать поставки чипов. Кроме того, нельзя просто так взять и увеличить масштаб в тысячи раз. Масштабирование требует времени на отладочные прогоны и эксперименты, но это скорее инженерное, а не ресурсное ограничение.

Тем не менее, анализ показывает: при должной координации и инвестициях технологический скачок в области ИИ может произойти гораздо быстрее, чем мы думаем. И это уже вполне просчитываемая возможность.

🔜 Статья на Epoch AI

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
5🤔2
🚀Kafka must-have инструмент для современных проектов MLOps!

Присоединяйся к вебинару и узнай, как настроить Kafka для обработки потоковых данных и интегрировать её в MLOps-проекты. Вебинар проходит в рамках подписки на курсы OTUS, которая даёт возможность приобрести 3 курса по цене одного.

🔑 Что будет:
— Практическое и теоретическое руководство по настройке Kafka в Docker и взаимодействию с ней через Python.
— Обзор инструментов для работы с Kafka: поднятие UI-интерфейса и управление потоками данных.
— Примеры использования Kafka для связи микросервисов и обзор ключевых функций, делающих её незаменимой брокером сообщений.
— Как использовать Kafka в MLOps: сбор данных для ML-моделей, мониторинг их работы и интеграция предсказаний в реальном времени.

🚀Регистрация по ссылке - https://otus.pw/18rU/
Подробнее о подписке OTUS - https://otus.pw/SMQu/

👉 Запишись сейчас, количество мест ограничено!
2
🧠🔥 LLM vs Сложные Решения: как думает ИИ, когда решение не лежит на поверхности

Авторы статьи изучают, что происходит, когда Large Language Models сталкиваются с трудными задачами, где простое извлечение паттернов не срабатывает.

🔍 Ключевые находки:
– В сложных задачах LLM реже полагается на простые статистики
– Модель начинает строить более глубокие логические цепочки
– Даже без обучения на конкретной задаче, LLM может *эмерджентно* развивать цепочку рассуждений
– Использование нескольких «мысленных шагов» помогает избежать ошибок, типичных для простых запросов

🤖 Авторы анализируют поведение модели на задачах, требующих нетривиального вывода — включая аналогии, причинно-следственные связи и длинные логические цепочки.

🧩 Вывод:
LLM способны на интуитивную адаптацию стратегии мышления, если задача «ломает» привычные шаблоны. Это открывает путь к обучению моделей с более универсальными когнитивными способностями.

📄 Чтение оригинала: https://alphaxiv.org/abs/2506.24119
6👍1🤔1
Forwarded from Machinelearning
🧠 ИИ умеет мыслить стратегически?

Новое исследование Oxford и King’s College London поставило перед ИИ-моделями сложную задачу: сыграть тысячи раундов эволюционной версии "Дилеммы заключённого", где важно не просто ответить правильно, а выстроить стратегию в долгую.

В эксперименте участвовали флагманские модели от OpenAI, Google и Anthropic. Вот как они себя проявили:

🔹 Google Gemini — хладнокровный и расчётливый
Не доверяет, первым атакует, наказывает за предательство. Стратег чистой воды.

🔹 OpenAI GPT — слишком добрый
Склонен к сотрудничеству даже тогда, когда это невыгодно. Хорош в мире, уязвим в конфликте.

🔹 Anthropic Claude — гибкий и адаптивный
Умеет прощать, но делает выводы на основе опыта коммуникации. Меняет поведение со временем и часто приходит к победе.

Исследователи проанализировали 32,000 решений, и выяснили:
эти модели не просто "угадывают" слова — они делают выводы, оценивают риск, строят гипотезы о поведении противника и последовательно придерживаются своей стратегии.

Общее в поведении:
1. Модели справляются с новыми, непредсказуемыми оппонентами
2. Демонстрируют разные стратегии, несмотря на общий обучающий набор данных
3. Объясняют свои действия — в некоторых случаях с вероятностным анализом, ссылаясь на поведение соперников

Еще большинство моделей выбирает кооперацию — особенно против предсказуемых и простых стратегий соперника.

Каждая модель показала уникальный стиль поведения — почти как характер.

Если приводить аналогию с реальными личностями:
- Gemini = Генри Киссинджер
- OpenAI = Вудро Вильсон
- Anthropic = Джордж Буш-старший

Современные LLM практически ведут себя как полноценные стратеги: формулируют цели, оценивают оппонентов и формируют осторожные, но устойчивые пути к победе.

🔜 Подробности

@ai_machinelearning_big_data


#AI #ML #MMLM #research
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
6🔥2
Forwarded from Machinelearning
⚡️ 5Gemma: новая коллекция энкодер-декодер моделей от Google.

Инженеры Google DeepMind решили вдохнуть новую жизнь в классический подход «энкодер-декодер» выпустив семейство моделей T5Gemma.

Главная интрига заключается не в том, что они сделали, а в том, как. Вместо того чтобы обучать модели с нуля, они разработали метод «адаптации»: взяли уже готовую и предобученную модель-декодер Gemma 2 и, по сути, пересобрали ее в двухкомпонентную энкодер-декодерную архитектуру.

Метод открыл дорогу для интересных экспериментов. Например, стало возможно создавать «несбалансированные» модели, комбинируя большой энкодер с маленьким декодером, скажем, 9-миллиардный энкодер и 2-миллиардный декодер.

Такая конфигурация идеальна для задач суммаризации, где глубокое понимание исходного текста (работа энкодера) гораздо важнее, чем генерация сложного и витиеватого ответа (работа декодера). Это дает инженерам гибкий инструмент для тонкой настройки баланса между качеством и скоростью работы.

🟡Но самое важное - прирост в производительности.

На тестах T5Gemma показывает результаты на уровне или даже лучше своих «однокомпонентных» аналогов. Асимметричная модель T5Gemma 9B-2B демонстрирует значительно более высокую точность, чем базовая Gemma 2 2B, но при этом скорость инференса у них почти идентична.

Даже сбалансированная T5Gemma 9B-9B оказывается точнее, чем Gemma 2 9B, при сопоставимой задержке. Это прямое доказательство того, что двухкомпонентная архитектура может быть и умнее, и эффективнее.

T5Gemma показывает впечатляющий рост в задачах, требующих логических рассуждений. Например, на математическом тесте GSM8K модель T5Gemma 9B-9B набирает на 9 баллов больше, чем Gemma 2 9B.

Эффект становится еще более выраженным после инструктивной донастройки. Здесь разрыв в производительности резко увеличивается: на бенчмарке MMLU модель T5Gemma 2B-2B IT опережает аналог Gemma 2 2B IT почти на 12 баллов.

🟡Google выложила в открытый доступ целую линейку чекпойнтов:

🟢T5 (Small, Base, Large, XL) на базе Gemma (2B, 9B);

🟢«Несбалансированную» версию 9B-2B для экспериментов;

🟢Модели с разными целями обучения (PrefixLM для генерации, UL2 для качества представлений).


🔜 Попробовать возможности T5Gemma или настроить их под свои нужды можно с помощью блокнота Colab. Модели также доступны в Vertex AI.


📌Лицензирование: Gemma License.


🟡T5gemma: https://developers.googleblog.com/en/t5gemma/
🟡Статья: https://arxiv.org/abs/2504.06225
🟡Скачать модель: https://huggingface.co/collections/google/t5gemma-686ba262fe290b881d21ec86

@ai_machinelearning_big_data

#AI #ML #T5Gemma #Google
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍31
MemOS — операционная система для памяти ИИ

Обычные LLM быстро забывают информацию, а дообучать их — долго и дорого. В новой работе предлагают радикально другой подход: MemOS превращает память в часть операционной системы.

🔸 Память как файлы: Модель может *записывать, перемещать и удалять* знания, как будто работает с файлами, и делать это прямо во время работы, а не только на этапе обучения.

🔸 MemCube — контейнер знаний: Каждое знание упаковывается в кубик с метками времени и авторства. Планировщик сам решает, где хранить этот "куб" — в тексте, GPU‑кэше или в виде маленького патча весов.

🔸 Умная экономия: MemOS работает с 1500 токенами памяти, но достигает такой же точности, как если бы модель загружала весь контекст. При этом скорость — как у облегчённых моделей.

🔸 Мгновенная подгрузка: На тестах с Qwen2.5‑72B переключение нужных "кубов" в кэш снижает задержку первого токена на 91.4%, *без изменения ответа*.

🔸 Результаты: MemOS набрал 73.31 балла по LLM‑Judge на LOCOMO-бенчмарке — почти на 9 баллов больше ближайшего конкурента. Особенно хорошо работает на сложных задачах с несколькими шагами и временными зависимостями.

💡 Итог: память как ОС — это не просто удобно, это ускоряет модель, повышает точность и даёт контроль над знаниями.

https://memos.openmem.net/
3😁2🔥1
🧠 Маленькая модель, большие успехи в браузере — благодаря умному делению вычислений

Обычно веб-агенты требуют огромных моделей или утомительного тюнинга. Но новая работа показывает: можно обучить маленькую 8B-модель, которая уверенно справляется с задачами в браузере — и даже обходит своего «учителя» Llama 70B на многих этапах.

💡 Как это работает:

1. Сначала слабая модель учится повторять демонстрации от Llama 70B (через supervised fine-tuning)
2. Пока "память свежа", обучение переключается на on-policy RL
3. Всего протестировано 1,370 комбинаций гиперпараметров, а ключевые из них определены с помощью бутстрепа (вместо слепой охоты за seed’ами)

📈 Результат:

— Успешность MiniWob++ выросла с 53% до 66%
— Использовано на 45% меньше FLOPs
— Первая open-source модель, которая догоняет GPT‑4o в браузерных задачах

🎯 Что помогло:

temperature 0.25
batch size 512
zero-advantage filtering
grouped advantages

Эти параметры оказались стабильны при разных бюджетах — можно начинать с них и не сжигать вычисления на тюнинг.

📌 Итого: compute-aware стратегия RL превращает даже небольшие open модели в уверенных веб-агентов. Путь к стабильной автоматизации браузера без гигантов всё ближе.

arxiv.org/abs/2507.04103
5👍1🔥1