XBOW Unleashes GPT-5’s Hidden Hacking Power, Doubling Performance
De Moor, Ziegler, XBOW, 2025
Блог
XBOW, компания, занимающаяся автономным тестированием на проникновение с помощью LLM-агентов, опубликовала блог о том, как они заменили комбинацию из Claude Sonnet + Gemini в своем агенте на GPT-5 и получили большое улучшение качества. После смены базовой LLM на GPT-5 их агент, по их словам, стал находить больше уязвимостей, делать это более надежно и за меньшее количество итераций. Кроме того, они заметили, что GPT-5 реже пытается исследовать очевидно тупиковые пути и генерирует значительно более сложные команды для терминала с меньшим числом ошибок. Результатом смены LLM стало не только повышение доли решенных задач на внутреннем бенчмарке с менее 60% до более 80% (что значит, что бенч пора менять), но и рост хитрых метрик типа «вероятность взлома ранее взломанной другой моделью цели с первого раза», и «числа взломанных публичных целей (видимо, с HackerOne) за одно и то же время по сравнению с предыдущей моделью».
Любопытно это в том числе потому, что сами OpenAI отмечали в System Card к GPT-5, что ее способности к решению наступательных задач не сильно отличаются от предыдущих моделей, таких как o3 (во всяком случае, так заявляют ребята из XBOW; в System Card написано, что внешняя оценка от Pattern Labs показала, что прогресс по сравнению с o3 значителен). Тут можно вспомнить статью от Palisade Research, где они утверждают, что способности LLM к кибератакам наступательной безопасности недопроявлены, т.е. LLM куда лучше в атаках, чем мы думаем, просто системы, которые мы строим вокруг них несовершенны. Если агентные обертки будут более мощными, может выяснится, что способностей у LLM куда больше. XBOW описывают свою систему как а) имеющую специализированные инструменты, написанные специально для LLM, которые делают тулы типа BurpSuite, сделанные для людей, доступными для человека в удобном формате, б) имеющую мультиагентное устройство, с разными субагентами для разных типов уязвимостей и центральным координатором. По опыту, если решить проблемы с инструментами – LLM все еще очень сложно работать с терминалом, особенно с реверс-шеллами и тулами со своей кастомной консолью – можно достаточно дешево получить рост результативности агентов, возможно, появление у каждого инструмента MCP-интерфейса смягчит эту проблему.
Хотя LLM для редтиминга – это очень перспективное, на мой взгляд, направление, а XBOW делают очень прикольные вещи и, вероятно, лучшие в этом направлении, в этом блоге, с его странными метриками и резкими скачками на закрытых бенчмарках (Стал ли агент решать больше на 1 класс задач, которых в бенчмарке 20%? Проверить невозможно), месседж в основном маркетинговый, и радикальных изменений прямо сейчас ожидать не стоит. Тем не менее, общий фон игнорировать невозможно: LLM-агенты не только пентестят, занимая первые места на лидербордах, но и находят уязвимости в исходном коде и реверсят APT-бинари. Станет ли кибербезопасность уделом тех, у кого много видеокарт? Все возможно, но лишними пара видеокарт точно не будет.
De Moor, Ziegler, XBOW, 2025
Блог
XBOW, компания, занимающаяся автономным тестированием на проникновение с помощью LLM-агентов, опубликовала блог о том, как они заменили комбинацию из Claude Sonnet + Gemini в своем агенте на GPT-5 и получили большое улучшение качества. После смены базовой LLM на GPT-5 их агент, по их словам, стал находить больше уязвимостей, делать это более надежно и за меньшее количество итераций. Кроме того, они заметили, что GPT-5 реже пытается исследовать очевидно тупиковые пути и генерирует значительно более сложные команды для терминала с меньшим числом ошибок. Результатом смены LLM стало не только повышение доли решенных задач на внутреннем бенчмарке с менее 60% до более 80% (что значит, что бенч пора менять), но и рост хитрых метрик типа «вероятность взлома ранее взломанной другой моделью цели с первого раза», и «числа взломанных публичных целей (видимо, с HackerOne) за одно и то же время по сравнению с предыдущей моделью».
Любопытно это в том числе потому, что сами OpenAI отмечали в System Card к GPT-5, что ее способности к решению наступательных задач не сильно отличаются от предыдущих моделей, таких как o3 (во всяком случае, так заявляют ребята из XBOW; в System Card написано, что внешняя оценка от Pattern Labs показала, что прогресс по сравнению с o3 значителен). Тут можно вспомнить статью от Palisade Research, где они утверждают, что способности LLM к кибератакам наступательной безопасности недопроявлены, т.е. LLM куда лучше в атаках, чем мы думаем, просто системы, которые мы строим вокруг них несовершенны. Если агентные обертки будут более мощными, может выяснится, что способностей у LLM куда больше. XBOW описывают свою систему как а) имеющую специализированные инструменты, написанные специально для LLM, которые делают тулы типа BurpSuite, сделанные для людей, доступными для человека в удобном формате, б) имеющую мультиагентное устройство, с разными субагентами для разных типов уязвимостей и центральным координатором. По опыту, если решить проблемы с инструментами – LLM все еще очень сложно работать с терминалом, особенно с реверс-шеллами и тулами со своей кастомной консолью – можно достаточно дешево получить рост результативности агентов, возможно, появление у каждого инструмента MCP-интерфейса смягчит эту проблему.
Хотя LLM для редтиминга – это очень перспективное, на мой взгляд, направление, а XBOW делают очень прикольные вещи и, вероятно, лучшие в этом направлении, в этом блоге, с его странными метриками и резкими скачками на закрытых бенчмарках (Стал ли агент решать больше на 1 класс задач, которых в бенчмарке 20%? Проверить невозможно), месседж в основном маркетинговый, и радикальных изменений прямо сейчас ожидать не стоит. Тем не менее, общий фон игнорировать невозможно: LLM-агенты не только пентестят, занимая первые места на лидербордах, но и находят уязвимости в исходном коде и реверсят APT-бинари. Станет ли кибербезопасность уделом тех, у кого много видеокарт? Все возможно, но лишними пара видеокарт точно не будет.
👍7