If you want to get a job as a machine learning engineer, donโt start by diving into the hottest libraries like PyTorch,TensorFlow, Langchain, etc.
Yes, you might hear a lot about them or some other trending technology of the year...but guess what!
Technologies evolve rapidly, especially in the age of AI, but core concepts are always seen as more valuable than expertise in any particular tool. Stop trying to perform a brain surgery without knowing anything about human anatomy.
Instead, here are basic skills that will get you further than mastering any framework:
๐๐๐ญ๐ก๐๐ฆ๐๐ญ๐ข๐๐ฌ ๐๐ง๐ ๐๐ญ๐๐ญ๐ข๐ฌ๐ญ๐ข๐๐ฌ - My first exposure to probability and statistics was in college, and it felt abstract at the time, but these concepts are the backbone of ML.
You can start here: Khan Academy Statistics and Probability - https://www.khanacademy.org/math/statistics-probability
๐๐ข๐ง๐๐๐ซ ๐๐ฅ๐ ๐๐๐ซ๐ ๐๐ง๐ ๐๐๐ฅ๐๐ฎ๐ฅ๐ฎ๐ฌ - Concepts like matrices, vectors, eigenvalues, and derivatives are fundamental to understanding how ml algorithms work. These are used in everything from simple regression to deep learning.
๐๐ซ๐จ๐ ๐ซ๐๐ฆ๐ฆ๐ข๐ง๐ - Should you learn Python, Rust, R, Julia, JavaScript, etc.? The best advice is to pick the language that is most frequently used for the type of work you want to do. I started with Python due to its simplicity and extensive library support, and it remains my go-to language for machine learning tasks.
You can start here: Automate the Boring Stuff with Python - https://automatetheboringstuff.com/
๐๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ ๐๐ง๐๐๐ซ๐ฌ๐ญ๐๐ง๐๐ข๐ง๐ - Understand the fundamental algorithms before jumping to deep learning. This includes linear regression, decision trees, SVMs, and clustering algorithms.
๐๐๐ฉ๐ฅ๐จ๐ฒ๐ฆ๐๐ง๐ญ ๐๐ง๐ ๐๐ซ๐จ๐๐ฎ๐๐ญ๐ข๐จ๐ง:
Knowing how to take a model from development to production is invaluable. This includes understanding APIs, model optimization, and monitoring. Tools like Docker and Flask are often used in this process.
๐๐ฅ๐จ๐ฎ๐ ๐๐จ๐ฆ๐ฉ๐ฎ๐ญ๐ข๐ง๐ ๐๐ง๐ ๐๐ข๐ ๐๐๐ญ๐:
Familiarity with cloud platforms (AWS, Google Cloud, Azure) and big data tools (Spark) is increasingly important as datasets grow larger. These skills help you manage and process large-scale data efficiently.
You can start here: Google Cloud Machine Learning - https://cloud.google.com/learn/training/machinelearning-ai
I love frameworks and libraries, and they can make anyone's job easier.
But the more solid your foundation, the easier it will be to pick up any new technologies and actually validate whether they solve your problems.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
All the best ๐๐
Yes, you might hear a lot about them or some other trending technology of the year...but guess what!
Technologies evolve rapidly, especially in the age of AI, but core concepts are always seen as more valuable than expertise in any particular tool. Stop trying to perform a brain surgery without knowing anything about human anatomy.
Instead, here are basic skills that will get you further than mastering any framework:
๐๐๐ญ๐ก๐๐ฆ๐๐ญ๐ข๐๐ฌ ๐๐ง๐ ๐๐ญ๐๐ญ๐ข๐ฌ๐ญ๐ข๐๐ฌ - My first exposure to probability and statistics was in college, and it felt abstract at the time, but these concepts are the backbone of ML.
You can start here: Khan Academy Statistics and Probability - https://www.khanacademy.org/math/statistics-probability
๐๐ข๐ง๐๐๐ซ ๐๐ฅ๐ ๐๐๐ซ๐ ๐๐ง๐ ๐๐๐ฅ๐๐ฎ๐ฅ๐ฎ๐ฌ - Concepts like matrices, vectors, eigenvalues, and derivatives are fundamental to understanding how ml algorithms work. These are used in everything from simple regression to deep learning.
๐๐ซ๐จ๐ ๐ซ๐๐ฆ๐ฆ๐ข๐ง๐ - Should you learn Python, Rust, R, Julia, JavaScript, etc.? The best advice is to pick the language that is most frequently used for the type of work you want to do. I started with Python due to its simplicity and extensive library support, and it remains my go-to language for machine learning tasks.
You can start here: Automate the Boring Stuff with Python - https://automatetheboringstuff.com/
๐๐ฅ๐ ๐จ๐ซ๐ข๐ญ๐ก๐ฆ ๐๐ง๐๐๐ซ๐ฌ๐ญ๐๐ง๐๐ข๐ง๐ - Understand the fundamental algorithms before jumping to deep learning. This includes linear regression, decision trees, SVMs, and clustering algorithms.
๐๐๐ฉ๐ฅ๐จ๐ฒ๐ฆ๐๐ง๐ญ ๐๐ง๐ ๐๐ซ๐จ๐๐ฎ๐๐ญ๐ข๐จ๐ง:
Knowing how to take a model from development to production is invaluable. This includes understanding APIs, model optimization, and monitoring. Tools like Docker and Flask are often used in this process.
๐๐ฅ๐จ๐ฎ๐ ๐๐จ๐ฆ๐ฉ๐ฎ๐ญ๐ข๐ง๐ ๐๐ง๐ ๐๐ข๐ ๐๐๐ญ๐:
Familiarity with cloud platforms (AWS, Google Cloud, Azure) and big data tools (Spark) is increasingly important as datasets grow larger. These skills help you manage and process large-scale data efficiently.
You can start here: Google Cloud Machine Learning - https://cloud.google.com/learn/training/machinelearning-ai
I love frameworks and libraries, and they can make anyone's job easier.
But the more solid your foundation, the easier it will be to pick up any new technologies and actually validate whether they solve your problems.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
All the best ๐๐
โค1
80% of people who start learning data analytics never land a job.
Not because they lack skill
but because they get stuck in "preparation mode."
I was almost one of them.
I spent months:
-Taking courses.
-Watching YouTube tutorials.
-Practicing SQL and Power BI.
But when it came time to publish a project or apply for jobs
I hesitated.
โI need to learn more first.โ
โMy portfolio isnโt ready.โ
โMaybe next month.โ
Sound familiar?
You donโt need more knowledge
you need more execution.
Data analysts who build & share projects are 3X more likely to get hired.
The best analysts arenโt the smartest.
Theyโre the ones who take action.
-They publish dashboards, even if they arenโt perfect.
-They post case studies, even when they feel like imposters.
-They apply for jobs before they "feel ready"
Stop overthinking.
Pick a dataset, build something, and share it today.
One messy project is worth more than 100 courses you never use.
Not because they lack skill
but because they get stuck in "preparation mode."
I was almost one of them.
I spent months:
-Taking courses.
-Watching YouTube tutorials.
-Practicing SQL and Power BI.
But when it came time to publish a project or apply for jobs
I hesitated.
โI need to learn more first.โ
โMy portfolio isnโt ready.โ
โMaybe next month.โ
Sound familiar?
You donโt need more knowledge
you need more execution.
Data analysts who build & share projects are 3X more likely to get hired.
The best analysts arenโt the smartest.
Theyโre the ones who take action.
-They publish dashboards, even if they arenโt perfect.
-They post case studies, even when they feel like imposters.
-They apply for jobs before they "feel ready"
Stop overthinking.
Pick a dataset, build something, and share it today.
One messy project is worth more than 100 courses you never use.
โค5๐1
Advanced Skills to Elevate Your Data Analytics Career
1๏ธโฃ SQL Optimization & Performance Tuning
๐ Learn indexing, query optimization, and execution plans to handle large datasets efficiently.
2๏ธโฃ Machine Learning Basics
๐ค Understand supervised and unsupervised learning, feature engineering, and model evaluation to enhance analytical capabilities.
3๏ธโฃ Big Data Technologies
๐๏ธ Explore Spark, Hadoop, and cloud platforms like AWS, Azure, or Google Cloud for large-scale data processing.
4๏ธโฃ Data Engineering Skills
โ๏ธ Learn ETL pipelines, data warehousing, and workflow automation to streamline data processing.
5๏ธโฃ Advanced Python for Analytics
๐ Master libraries like Scikit-Learn, TensorFlow, and Statsmodels for predictive analytics and automation.
6๏ธโฃ A/B Testing & Experimentation
๐ฏ Design and analyze controlled experiments to drive data-driven decision-making.
7๏ธโฃ Dashboard Design & UX
๐จ Build interactive dashboards with Power BI, Tableau, or Looker that enhance user experience.
8๏ธโฃ Cloud Data Analytics
โ๏ธ Work with cloud databases like BigQuery, Snowflake, and Redshift for scalable analytics.
9๏ธโฃ Domain Expertise
๐ผ Gain industry-specific knowledge (e.g., finance, healthcare, e-commerce) to provide more relevant insights.
๐ Soft Skills & Leadership
๐ก Develop stakeholder management, storytelling, and mentorship skills to advance in your career.
Hope it helps :)
#dataanalytics
1๏ธโฃ SQL Optimization & Performance Tuning
๐ Learn indexing, query optimization, and execution plans to handle large datasets efficiently.
2๏ธโฃ Machine Learning Basics
๐ค Understand supervised and unsupervised learning, feature engineering, and model evaluation to enhance analytical capabilities.
3๏ธโฃ Big Data Technologies
๐๏ธ Explore Spark, Hadoop, and cloud platforms like AWS, Azure, or Google Cloud for large-scale data processing.
4๏ธโฃ Data Engineering Skills
โ๏ธ Learn ETL pipelines, data warehousing, and workflow automation to streamline data processing.
5๏ธโฃ Advanced Python for Analytics
๐ Master libraries like Scikit-Learn, TensorFlow, and Statsmodels for predictive analytics and automation.
6๏ธโฃ A/B Testing & Experimentation
๐ฏ Design and analyze controlled experiments to drive data-driven decision-making.
7๏ธโฃ Dashboard Design & UX
๐จ Build interactive dashboards with Power BI, Tableau, or Looker that enhance user experience.
8๏ธโฃ Cloud Data Analytics
โ๏ธ Work with cloud databases like BigQuery, Snowflake, and Redshift for scalable analytics.
9๏ธโฃ Domain Expertise
๐ผ Gain industry-specific knowledge (e.g., finance, healthcare, e-commerce) to provide more relevant insights.
๐ Soft Skills & Leadership
๐ก Develop stakeholder management, storytelling, and mentorship skills to advance in your career.
Hope it helps :)
#dataanalytics
โค2
Excel Formulas Every Analyst Should Know
SUM(): Adds a range of numbers.
AVERAGE(): Calculates the average of a range.
VLOOKUP(): Searches for a value in the first column and returns a corresponding value.
HLOOKUP(): Searches for a value in the first row and returns a corresponding value.
INDEX(): Returns the value of a cell in a given range based on row and column numbers.
MATCH(): Finds the position of a value in a range.
IF(): Performs a logical test and returns one value for TRUE, another for FALSE.
COUNTIF(): Counts cells that meet a specific condition.
CONCATENATE(): Joins two or more text strings together.
LEFT()/RIGHT(): Extracts a specified number of characters from the left or right of a text string.
Excel Resources: t.iss.one/excel_data
I have curated best 80+ top-notch Data Analytics Resources ๐๐
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Like this post for more content like this ๐โฅ๏ธ
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
SUM(): Adds a range of numbers.
AVERAGE(): Calculates the average of a range.
VLOOKUP(): Searches for a value in the first column and returns a corresponding value.
HLOOKUP(): Searches for a value in the first row and returns a corresponding value.
INDEX(): Returns the value of a cell in a given range based on row and column numbers.
MATCH(): Finds the position of a value in a range.
IF(): Performs a logical test and returns one value for TRUE, another for FALSE.
COUNTIF(): Counts cells that meet a specific condition.
CONCATENATE(): Joins two or more text strings together.
LEFT()/RIGHT(): Extracts a specified number of characters from the left or right of a text string.
Excel Resources: t.iss.one/excel_data
I have curated best 80+ top-notch Data Analytics Resources ๐๐
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Like this post for more content like this ๐โฅ๏ธ
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
โค3
SQL Interview Questions !!
๐ Write a query to find all employees whose salaries exceed the company's average salary.
๐ Write a query to retrieve the names of employees who work in the same department as 'John Doe'.
๐ Write a query to display the second highest salary from the Employee table without using the MAX function twice.
๐ Write a query to find all customers who have placed more than five orders.
๐ Write a query to count the total number of orders placed by each customer.
๐ Write a query to list employees who joined the company within the last 6 months.
๐ Write a query to calculate the total sales amount for each product.
๐ Write a query to list all products that have never been sold.
๐ Write a query to remove duplicate rows from a table.
๐ Write a query to identify the top 10 customers who have not placed any orders in the past year.
Here you can find essential SQL Interview Resources๐
https://t.iss.one/mysqldata
Like this post if you need more ๐โค๏ธ
Hope it helps :)
๐ Write a query to find all employees whose salaries exceed the company's average salary.
๐ Write a query to retrieve the names of employees who work in the same department as 'John Doe'.
๐ Write a query to display the second highest salary from the Employee table without using the MAX function twice.
๐ Write a query to find all customers who have placed more than five orders.
๐ Write a query to count the total number of orders placed by each customer.
๐ Write a query to list employees who joined the company within the last 6 months.
๐ Write a query to calculate the total sales amount for each product.
๐ Write a query to list all products that have never been sold.
๐ Write a query to remove duplicate rows from a table.
๐ Write a query to identify the top 10 customers who have not placed any orders in the past year.
Here you can find essential SQL Interview Resources๐
https://t.iss.one/mysqldata
Like this post if you need more ๐โค๏ธ
Hope it helps :)
โค1
๐ Data Analyst Roadmap (2025)
Master the Skills That Top Companies Are Hiring For!
๐ 1. Learn Excel / Google Sheets
Basic formulas & formatting
VLOOKUP, Pivot Tables, Charts
Data cleaning & conditional formatting
๐ 2. Master SQL
SELECT, WHERE, ORDER BY
JOINs (INNER, LEFT, RIGHT)
GROUP BY, HAVING, LIMIT
Subqueries, CTEs, Window Functions
๐ 3. Learn Data Visualization Tools
Power BI / Tableau (choose one)
Charts, filters, slicers
Dashboards & storytelling
๐ 4. Get Comfortable with Statistics
Mean, Median, Mode, Std Dev
Probability basics
A/B Testing, Hypothesis Testing
Correlation & Regression
๐ 5. Learn Python for Data Analysis (Optional but Powerful)
Pandas & NumPy for data handling
Seaborn, Matplotlib for visuals
Jupyter Notebooks for analysis
๐ 6. Data Cleaning & Wrangling
Handle missing values
Fix data types, remove duplicates
Text processing & date formatting
๐ 7. Understand Business Metrics
KPIs: Revenue, Churn, CAC, LTV
Think like a business analyst
Deliver actionable insights
๐ 8. Communication & Storytelling
Present insights with clarity
Simplify complex data
Speak the language of stakeholders
๐ 9. Version Control (Git & GitHub)
Track your projects
Build a data portfolio
Collaborate with the community
๐ 10. Interview & Resume Preparation
Excel, SQL, case-based questions
Mock interviews + real projects
Resume with measurable achievements
โจ React โค๏ธ for more
Master the Skills That Top Companies Are Hiring For!
๐ 1. Learn Excel / Google Sheets
Basic formulas & formatting
VLOOKUP, Pivot Tables, Charts
Data cleaning & conditional formatting
๐ 2. Master SQL
SELECT, WHERE, ORDER BY
JOINs (INNER, LEFT, RIGHT)
GROUP BY, HAVING, LIMIT
Subqueries, CTEs, Window Functions
๐ 3. Learn Data Visualization Tools
Power BI / Tableau (choose one)
Charts, filters, slicers
Dashboards & storytelling
๐ 4. Get Comfortable with Statistics
Mean, Median, Mode, Std Dev
Probability basics
A/B Testing, Hypothesis Testing
Correlation & Regression
๐ 5. Learn Python for Data Analysis (Optional but Powerful)
Pandas & NumPy for data handling
Seaborn, Matplotlib for visuals
Jupyter Notebooks for analysis
๐ 6. Data Cleaning & Wrangling
Handle missing values
Fix data types, remove duplicates
Text processing & date formatting
๐ 7. Understand Business Metrics
KPIs: Revenue, Churn, CAC, LTV
Think like a business analyst
Deliver actionable insights
๐ 8. Communication & Storytelling
Present insights with clarity
Simplify complex data
Speak the language of stakeholders
๐ 9. Version Control (Git & GitHub)
Track your projects
Build a data portfolio
Collaborate with the community
๐ 10. Interview & Resume Preparation
Excel, SQL, case-based questions
Mock interviews + real projects
Resume with measurable achievements
โจ React โค๏ธ for more
โค5
Step-by-Step Approach to Learn Data Analytics
โ Learn Programming Language โ SQL & Python
โ
โ Master Excel & Spreadsheets โ Pivot Tables, VLOOKUP, Data Cleaning
โ
โ SQL for Data Analysis โ SELECT, JOINS, GROUP BY, Window Functions
โ
โ Data Manipulation & Processing โ Pandas, NumPy
โ
โ Data Visualization โ Power BI, Tableau, Matplotlib, Seaborn
โ
โ Exploratory Data Analysis (EDA) โ Missing Values, Outliers, Feature Engineering
โ
โ Business Intelligence & Reporting โ Dashboards, Storytelling with Data
โ
โ Advanced Concepts โ A/B Testing, Statistical Analysis, Machine Learning Basics
React with โค๏ธ for detailed explanation
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
โ Learn Programming Language โ SQL & Python
โ
โ Master Excel & Spreadsheets โ Pivot Tables, VLOOKUP, Data Cleaning
โ
โ SQL for Data Analysis โ SELECT, JOINS, GROUP BY, Window Functions
โ
โ Data Manipulation & Processing โ Pandas, NumPy
โ
โ Data Visualization โ Power BI, Tableau, Matplotlib, Seaborn
โ
โ Exploratory Data Analysis (EDA) โ Missing Values, Outliers, Feature Engineering
โ
โ Business Intelligence & Reporting โ Dashboards, Storytelling with Data
โ
โ Advanced Concepts โ A/B Testing, Statistical Analysis, Machine Learning Basics
React with โค๏ธ for detailed explanation
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
โค1
๐ Data Analyst Roadmap (2025)
Master the Skills That Top Companies Are Hiring For!
๐ 1. Learn Excel / Google Sheets
Basic formulas & formatting
VLOOKUP, Pivot Tables, Charts
Data cleaning & conditional formatting
๐ 2. Master SQL
SELECT, WHERE, ORDER BY
JOINs (INNER, LEFT, RIGHT)
GROUP BY, HAVING, LIMIT
Subqueries, CTEs, Window Functions
๐ 3. Learn Data Visualization Tools
Power BI / Tableau (choose one)
Charts, filters, slicers
Dashboards & storytelling
๐ 4. Get Comfortable with Statistics
Mean, Median, Mode, Std Dev
Probability basics
A/B Testing, Hypothesis Testing
Correlation & Regression
๐ 5. Learn Python for Data Analysis (Optional but Powerful)
Pandas & NumPy for data handling
Seaborn, Matplotlib for visuals
Jupyter Notebooks for analysis
๐ 6. Data Cleaning & Wrangling
Handle missing values
Fix data types, remove duplicates
Text processing & date formatting
๐ 7. Understand Business Metrics
KPIs: Revenue, Churn, CAC, LTV
Think like a business analyst
Deliver actionable insights
๐ 8. Communication & Storytelling
Present insights with clarity
Simplify complex data
Speak the language of stakeholders
๐ 9. Version Control (Git & GitHub)
Track your projects
Build a data portfolio
Collaborate with the community
๐ 10. Interview & Resume Preparation
Excel, SQL, case-based questions
Mock interviews + real projects
Resume with measurable achievements
โจ React โค๏ธ for more
Master the Skills That Top Companies Are Hiring For!
๐ 1. Learn Excel / Google Sheets
Basic formulas & formatting
VLOOKUP, Pivot Tables, Charts
Data cleaning & conditional formatting
๐ 2. Master SQL
SELECT, WHERE, ORDER BY
JOINs (INNER, LEFT, RIGHT)
GROUP BY, HAVING, LIMIT
Subqueries, CTEs, Window Functions
๐ 3. Learn Data Visualization Tools
Power BI / Tableau (choose one)
Charts, filters, slicers
Dashboards & storytelling
๐ 4. Get Comfortable with Statistics
Mean, Median, Mode, Std Dev
Probability basics
A/B Testing, Hypothesis Testing
Correlation & Regression
๐ 5. Learn Python for Data Analysis (Optional but Powerful)
Pandas & NumPy for data handling
Seaborn, Matplotlib for visuals
Jupyter Notebooks for analysis
๐ 6. Data Cleaning & Wrangling
Handle missing values
Fix data types, remove duplicates
Text processing & date formatting
๐ 7. Understand Business Metrics
KPIs: Revenue, Churn, CAC, LTV
Think like a business analyst
Deliver actionable insights
๐ 8. Communication & Storytelling
Present insights with clarity
Simplify complex data
Speak the language of stakeholders
๐ 9. Version Control (Git & GitHub)
Track your projects
Build a data portfolio
Collaborate with the community
๐ 10. Interview & Resume Preparation
Excel, SQL, case-based questions
Mock interviews + real projects
Resume with measurable achievements
โจ React โค๏ธ for more
โค4
SQL Advanced Concepts for Data Analyst Interviews
1. Window Functions: Gain proficiency in window functions like
2. Common Table Expressions (CTEs): Understand how to use CTEs with the
3. Recursive CTEs: Learn how to use recursive CTEs to solve hierarchical or recursive data problems, such as navigating organizational charts or bill-of-materials structures.
4. Advanced Joins: Master complex join techniques, including self-joins (joining a table with itself), cross joins (Cartesian product), and using multiple joins in a single query.
5. Subqueries and Correlated Subqueries: Be adept at writing subqueries that return a single value or a set of values. Correlated subqueries, which reference columns from the outer query, are particularly powerful for row-by-row operations.
6. Indexing Strategies: Learn advanced indexing strategies, such as covering indexes, composite indexes, and partial indexes. Understand how to optimize query performance by designing the right indexes and when to use
7. Query Optimization and Execution Plans: Develop skills in reading and interpreting SQL execution plans to understand how queries are executed. Use tools like
8. Stored Procedures: Understand how to create and use stored procedures to encapsulate complex SQL logic into reusable, modular code. Learn how to pass parameters, handle errors, and return multiple result sets from a stored procedure.
9. Triggers: Learn how to create triggers to automatically execute a specified action in response to certain events on a table (e.g.,
10. Transactions and Isolation Levels: Master the use of transactions to ensure that a series of SQL operations are executed as a single unit of work. Understand different isolation levels (
11. PIVOT and UNPIVOT: Use the
12. Dynamic SQL: Learn how to write dynamic SQL queries that are constructed and executed at runtime. This is useful when the exact SQL query cannot be determined until runtime, such as in scenarios involving user-defined filters or conditional logic.
13. Data Partitioning: Understand how to implement data partitioning strategies, such as range partitioning or list partitioning, to manage large tables efficiently. Partitioning can significantly improve query performance and manageability.
14. Temporary Tables: Learn how to create and use temporary tables to store intermediate results within a session. Understand the differences between local and global temporary tables, and when to use them.
15. Materialized Views: Use materialized views to store the result of a query physically and update it periodically. This can drastically improve performance for complex queries that need to be executed frequently.
16. Handling Complex Data Types: Understand how to work with complex data types such as JSON, XML, and arrays. Learn how to store, query, and manipulate these types in SQL databases, including using functions like
Here you can find SQL Interview Resources๐
https://t.iss.one/DataSimplifier
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
1. Window Functions: Gain proficiency in window functions like
ROW_NUMBER(), RANK(), DENSE_RANK(), NTILE(), and LAG()/LEAD(). These functions allow you to perform calculations across a set of table rows related to the current row without collapsing the result set into a single output.2. Common Table Expressions (CTEs): Understand how to use CTEs with the
WITH clause to create temporary result sets that can be referenced within a SELECT, INSERT, UPDATE, or DELETE statement. CTEs improve the readability and maintainability of complex queries.3. Recursive CTEs: Learn how to use recursive CTEs to solve hierarchical or recursive data problems, such as navigating organizational charts or bill-of-materials structures.
4. Advanced Joins: Master complex join techniques, including self-joins (joining a table with itself), cross joins (Cartesian product), and using multiple joins in a single query.
5. Subqueries and Correlated Subqueries: Be adept at writing subqueries that return a single value or a set of values. Correlated subqueries, which reference columns from the outer query, are particularly powerful for row-by-row operations.
6. Indexing Strategies: Learn advanced indexing strategies, such as covering indexes, composite indexes, and partial indexes. Understand how to optimize query performance by designing the right indexes and when to use
CLUSTERED versus NON-CLUSTERED indexes.7. Query Optimization and Execution Plans: Develop skills in reading and interpreting SQL execution plans to understand how queries are executed. Use tools like
EXPLAIN or EXPLAIN ANALYZE to identify performance bottlenecks and optimize query performance.8. Stored Procedures: Understand how to create and use stored procedures to encapsulate complex SQL logic into reusable, modular code. Learn how to pass parameters, handle errors, and return multiple result sets from a stored procedure.
9. Triggers: Learn how to create triggers to automatically execute a specified action in response to certain events on a table (e.g.,
AFTER INSERT, BEFORE UPDATE). Triggers are useful for maintaining data integrity and automating workflows.10. Transactions and Isolation Levels: Master the use of transactions to ensure that a series of SQL operations are executed as a single unit of work. Understand different isolation levels (
READ UNCOMMITTED, READ COMMITTED, REPEATABLE READ, SERIALIZABLE) and their impact on data consistency and concurrency.11. PIVOT and UNPIVOT: Use the
PIVOT operator to transform row data into columnar data and UNPIVOT to convert columns back into rows. These operations are crucial for reshaping data for reporting and analysis.12. Dynamic SQL: Learn how to write dynamic SQL queries that are constructed and executed at runtime. This is useful when the exact SQL query cannot be determined until runtime, such as in scenarios involving user-defined filters or conditional logic.
13. Data Partitioning: Understand how to implement data partitioning strategies, such as range partitioning or list partitioning, to manage large tables efficiently. Partitioning can significantly improve query performance and manageability.
14. Temporary Tables: Learn how to create and use temporary tables to store intermediate results within a session. Understand the differences between local and global temporary tables, and when to use them.
15. Materialized Views: Use materialized views to store the result of a query physically and update it periodically. This can drastically improve performance for complex queries that need to be executed frequently.
16. Handling Complex Data Types: Understand how to work with complex data types such as JSON, XML, and arrays. Learn how to store, query, and manipulate these types in SQL databases, including using functions like
JSON_EXTRACT(), XMLQUERY(), or array functions.Here you can find SQL Interview Resources๐
https://t.iss.one/DataSimplifier
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
โค4
SQL Joins โ
โค1๐1
๐ฏ ๐๐ฌ๐ฌ๐๐ง๐ญ๐ข๐๐ฅ ๐๐๐๐ ๐๐๐๐๐๐๐ ๐๐๐๐๐๐ ๐๐ก๐๐ญ ๐๐๐๐ซ๐ฎ๐ข๐ญ๐๐ซ๐ฌ ๐๐จ๐จ๐ค ๐
๐จ๐ซ ๐ฏ
If you're applying for Data Analyst roles, having technical skills like SQL and Power BI is importantโbut recruiters look for more than just tools!
๐น 1๏ธโฃ ๐๐๐ ๐ข๐ฌ ๐๐๐๐ ๐โ๐๐๐ฌ๐ญ๐๐ซ ๐๐ญ
โ Know how to write optimized queries (not just SELECT * from everywhere!)
โ Be comfortable with JOINS, CTEs, Window Functions & Performance Optimization
โ Practice solving real-world business scenarios using SQL
๐ก Example Question: How would you find the top 5 best-selling products in each category using SQL?
๐น 2๏ธโฃ ๐๐ฎ๐ฌ๐ข๐ง๐๐ฌ๐ฌ ๐๐๐ฎ๐ฆ๐๐ง: ๐๐ก๐ข๐ง๐ค ๐๐ข๐ค๐ ๐ ๐๐๐๐ข๐ฌ๐ข๐จ๐ง-๐๐๐ค๐๐ซ
โ Understand the why behind the dataโnot just the numbers
โ Learn how to frame insights for different stakeholders (Tech & Non-Tech)
โ Use data storytellingโsimplify complex findings into actionable takeaways
๐ก Example: Instead of saying, "Revenue increased by 12%," say "Revenue increased 12% after launching a targeted discount campaign, driving a 20% increase in repeat purchases."
๐น 3๏ธโฃ ๐๐จ๐ฐ๐๐ซ ๐๐ / ๐๐๐๐ฅ๐๐๐ฎโ๐๐๐ค๐ ๐๐๐ฌ๐ก๐๐จ๐๐ซ๐๐ฌ ๐๐ก๐๐ญ ๐๐ฉ๐๐๐ค!
โ Avoid overloading dashboards with too many visualsโfocus on key KPIs
โ Use interactive elements (filters, drill-throughs) for better usability
โ Keep visuals simple & clearโbar charts are better than complex pie charts!
๐ก Tip: Before creating a dashboard, ask: "What business problem does this solve?"
๐น 4๏ธโฃ ๐๐ฒ๐ญ๐ก๐จ๐ง & ๐๐ฑ๐๐๐ฅโ๐๐๐ง๐๐ฅ๐ ๐๐๐ญ๐ ๐๐๐๐ข๐๐ข๐๐ง๐ญ๐ฅ๐ฒ
โ Python for data wrangling, EDA & automation (Pandas, NumPy, Seaborn)
โ Excel for quick analysis, PivotTables, VLOOKUP/XLOOKUP, Power Query
โ Know when to use Excel vs. Python (hint: small vs. large datasets)
Being a Data Analyst is more than just running queriesโitโs about understanding the business, making insights actionable, and communicating effectively!
Free Resources: https://t.iss.one/sqlspecialist
If you're applying for Data Analyst roles, having technical skills like SQL and Power BI is importantโbut recruiters look for more than just tools!
๐น 1๏ธโฃ ๐๐๐ ๐ข๐ฌ ๐๐๐๐ ๐โ๐๐๐ฌ๐ญ๐๐ซ ๐๐ญ
โ Know how to write optimized queries (not just SELECT * from everywhere!)
โ Be comfortable with JOINS, CTEs, Window Functions & Performance Optimization
โ Practice solving real-world business scenarios using SQL
๐ก Example Question: How would you find the top 5 best-selling products in each category using SQL?
๐น 2๏ธโฃ ๐๐ฎ๐ฌ๐ข๐ง๐๐ฌ๐ฌ ๐๐๐ฎ๐ฆ๐๐ง: ๐๐ก๐ข๐ง๐ค ๐๐ข๐ค๐ ๐ ๐๐๐๐ข๐ฌ๐ข๐จ๐ง-๐๐๐ค๐๐ซ
โ Understand the why behind the dataโnot just the numbers
โ Learn how to frame insights for different stakeholders (Tech & Non-Tech)
โ Use data storytellingโsimplify complex findings into actionable takeaways
๐ก Example: Instead of saying, "Revenue increased by 12%," say "Revenue increased 12% after launching a targeted discount campaign, driving a 20% increase in repeat purchases."
๐น 3๏ธโฃ ๐๐จ๐ฐ๐๐ซ ๐๐ / ๐๐๐๐ฅ๐๐๐ฎโ๐๐๐ค๐ ๐๐๐ฌ๐ก๐๐จ๐๐ซ๐๐ฌ ๐๐ก๐๐ญ ๐๐ฉ๐๐๐ค!
โ Avoid overloading dashboards with too many visualsโfocus on key KPIs
โ Use interactive elements (filters, drill-throughs) for better usability
โ Keep visuals simple & clearโbar charts are better than complex pie charts!
๐ก Tip: Before creating a dashboard, ask: "What business problem does this solve?"
๐น 4๏ธโฃ ๐๐ฒ๐ญ๐ก๐จ๐ง & ๐๐ฑ๐๐๐ฅโ๐๐๐ง๐๐ฅ๐ ๐๐๐ญ๐ ๐๐๐๐ข๐๐ข๐๐ง๐ญ๐ฅ๐ฒ
โ Python for data wrangling, EDA & automation (Pandas, NumPy, Seaborn)
โ Excel for quick analysis, PivotTables, VLOOKUP/XLOOKUP, Power Query
โ Know when to use Excel vs. Python (hint: small vs. large datasets)
Being a Data Analyst is more than just running queriesโitโs about understanding the business, making insights actionable, and communicating effectively!
Free Resources: https://t.iss.one/sqlspecialist
โค5
Tableau Cheat Sheet โ
This Tableau cheatsheet is designed to be your quick reference guide for data visualization and analysis using Tableau. Whether youโre a beginner learning the basics or an experienced user looking for a handy resource, this cheatsheet covers essential topics.
1. Connecting to Data
- Use *Connect* pane to connect to various data sources (Excel, SQL Server, Text files, etc.).
2. Data Preparation
- Data Interpreter: Clean data automatically using the Data Interpreter.
- Join Data: Combine data from multiple tables using joins (Inner, Left, Right, Outer).
- Union Data: Stack data from multiple tables with the same structure.
3. Creating Views
- Drag & Drop: Drag fields from the Data pane onto Rows, Columns, or Marks to create visualizations.
- Show Me: Use the *Show Me* panel to select different visualization types.
4. Types of Visualizations
- Bar Chart: Compare values across categories.
- Line Chart: Display trends over time.
- Pie Chart: Show proportions of a whole (use sparingly).
- Map: Visualize geographic data.
- Scatter Plot: Show relationships between two variables.
5. Filters
- Dimension Filters: Filter data based on categorical values.
- Measure Filters: Filter data based on numerical values.
- Context Filters: Set a context for other filters to improve performance.
6. Calculated Fields
- Create calculated fields to derive new data:
- Example:
7. Parameters
- Use parameters to allow user input and control measures dynamically.
8. Formatting
- Format fonts, colors, borders, and lines using the Format pane for better visual appeal.
9. Dashboards
- Combine multiple sheets into a dashboard using the *Dashboard* tab.
- Use dashboard actions (filter, highlight, URL) to create interactivity.
10. Story Points
- Create a story to guide users through insights with narrative and visualizations.
11. Publishing & Sharing
- Publish dashboards to Tableau Server or Tableau Online for sharing and collaboration.
12. Export Options
- Export to PDF or image for offline use.
13. Keyboard Shortcuts
- Show/Hide Sidebar:
- Duplicate Sheet:
- Undo:
- Redo:
14. Performance Optimization
- Use extracts instead of live connections for faster performance.
- Optimize calculations and filters to improve dashboard loading times.
Best Resources to learn Tableau: https://t.iss.one/PowerBI_analyst
Hope you'll like it
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
This Tableau cheatsheet is designed to be your quick reference guide for data visualization and analysis using Tableau. Whether youโre a beginner learning the basics or an experienced user looking for a handy resource, this cheatsheet covers essential topics.
1. Connecting to Data
- Use *Connect* pane to connect to various data sources (Excel, SQL Server, Text files, etc.).
2. Data Preparation
- Data Interpreter: Clean data automatically using the Data Interpreter.
- Join Data: Combine data from multiple tables using joins (Inner, Left, Right, Outer).
- Union Data: Stack data from multiple tables with the same structure.
3. Creating Views
- Drag & Drop: Drag fields from the Data pane onto Rows, Columns, or Marks to create visualizations.
- Show Me: Use the *Show Me* panel to select different visualization types.
4. Types of Visualizations
- Bar Chart: Compare values across categories.
- Line Chart: Display trends over time.
- Pie Chart: Show proportions of a whole (use sparingly).
- Map: Visualize geographic data.
- Scatter Plot: Show relationships between two variables.
5. Filters
- Dimension Filters: Filter data based on categorical values.
- Measure Filters: Filter data based on numerical values.
- Context Filters: Set a context for other filters to improve performance.
6. Calculated Fields
- Create calculated fields to derive new data:
- Example:
Sales Growth = SUM([Sales]) - SUM([Previous Sales])7. Parameters
- Use parameters to allow user input and control measures dynamically.
8. Formatting
- Format fonts, colors, borders, and lines using the Format pane for better visual appeal.
9. Dashboards
- Combine multiple sheets into a dashboard using the *Dashboard* tab.
- Use dashboard actions (filter, highlight, URL) to create interactivity.
10. Story Points
- Create a story to guide users through insights with narrative and visualizations.
11. Publishing & Sharing
- Publish dashboards to Tableau Server or Tableau Online for sharing and collaboration.
12. Export Options
- Export to PDF or image for offline use.
13. Keyboard Shortcuts
- Show/Hide Sidebar:
Ctrl+Alt+T- Duplicate Sheet:
Ctrl + D- Undo:
Ctrl + Z- Redo:
Ctrl + Y14. Performance Optimization
- Use extracts instead of live connections for faster performance.
- Optimize calculations and filters to improve dashboard loading times.
Best Resources to learn Tableau: https://t.iss.one/PowerBI_analyst
Hope you'll like it
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
โค3
Power Bi DAX CheatSheet (1).pdf
18.5 MB
Power BI DAX complete Cheatsheet ๐ง
React โค๏ธ for more
React โค๏ธ for more
โค8
๐ Data Analyst Project Ideas for Beginners
1. Sales Analysis Dashboard: Use tools like Excel or Tableau to create a dashboard analyzing sales data. Visualize trends, top products, and seasonal patterns.
2. Customer Segmentation: Analyze customer data using clustering techniques (like K-means) to segment customers based on purchasing behavior and demographics.
3. Social Media Metrics Analysis: Gather data from social media platforms to analyze engagement metrics. Create visualizations to highlight trends and performance.
4. Survey Data Analysis: Conduct a survey and analyze the results using statistical techniques. Present findings with visualizations to showcase insights.
5. Exploratory Data Analysis (EDA): Choose a public dataset and perform EDA using Python (Pandas, Matplotlib) or R (tidyverse). Summarize key insights and visualizations.
6. Employee Performance Analysis: Analyze employee performance data to identify trends in productivity, turnover rates, and training effectiveness.
7. Public Health Data Analysis: Use datasets from public health sources (like CDC) to analyze trends in health metrics (e.g., vaccination rates, disease outbreaks) and visualize findings.
8. Real Estate Market Analysis: Analyze real estate listings to find trends in pricing, location, and features. Use data visualization to present your findings.
9. Weather Data Visualization: Collect weather data and analyze trends over time. Create visualizations to show changes in temperature, precipitation, or extreme weather events.
10. Financial Analysis: Analyze a companyโs financial statements to assess its performance over time. Create visualizations to highlight key financial ratios and trends.
Data Analytics Resources ๐๐
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Hope it helps :)
1. Sales Analysis Dashboard: Use tools like Excel or Tableau to create a dashboard analyzing sales data. Visualize trends, top products, and seasonal patterns.
2. Customer Segmentation: Analyze customer data using clustering techniques (like K-means) to segment customers based on purchasing behavior and demographics.
3. Social Media Metrics Analysis: Gather data from social media platforms to analyze engagement metrics. Create visualizations to highlight trends and performance.
4. Survey Data Analysis: Conduct a survey and analyze the results using statistical techniques. Present findings with visualizations to showcase insights.
5. Exploratory Data Analysis (EDA): Choose a public dataset and perform EDA using Python (Pandas, Matplotlib) or R (tidyverse). Summarize key insights and visualizations.
6. Employee Performance Analysis: Analyze employee performance data to identify trends in productivity, turnover rates, and training effectiveness.
7. Public Health Data Analysis: Use datasets from public health sources (like CDC) to analyze trends in health metrics (e.g., vaccination rates, disease outbreaks) and visualize findings.
8. Real Estate Market Analysis: Analyze real estate listings to find trends in pricing, location, and features. Use data visualization to present your findings.
9. Weather Data Visualization: Collect weather data and analyze trends over time. Create visualizations to show changes in temperature, precipitation, or extreme weather events.
10. Financial Analysis: Analyze a companyโs financial statements to assess its performance over time. Create visualizations to highlight key financial ratios and trends.
Data Analytics Resources ๐๐
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Hope it helps :)
โค2