Data Analysis Books | Python | SQL | Excel | Artificial Intelligence | Power BI | Tableau | AI Resources
48.5K subscribers
236 photos
1 video
36 files
396 links
Download Telegram
Data Analyst Interview Questions & Preparation Tips

Be prepared with a mix of technical, analytical, and business-oriented interview questions.

1. Technical Questions (Data Analysis & Reporting)

SQL Questions:

How do you write a query to fetch the top 5 highest revenue-generating customers?

Explain the difference between INNER JOIN, LEFT JOIN, and FULL OUTER JOIN.

How would you optimize a slow-running query?

What are CTEs and when would you use them?

Data Visualization (Power BI / Tableau / Excel)

How would you create a dashboard to track key performance metrics?

Explain the difference between measures and calculated columns in Power BI.

How do you handle missing data in Tableau?

What are DAX functions, and can you give an example?

ETL & Data Processing (Alteryx, Power BI, Excel)

What is ETL, and how does it relate to BI?

Have you used Alteryx for data transformation? Explain a complex workflow you built.

How do you automate reporting using Power Query in Excel?


2. Business and Analytical Questions

How do you define KPIs for a business process?

Give an example of how you used data to drive a business decision.

How would you identify cost-saving opportunities in a reporting process?

Explain a time when your report uncovered a hidden business insight.


3. Scenario-Based & Behavioral Questions

Stakeholder Management:

How do you handle a situation where different business units have conflicting reporting requirements?

How do you explain complex data insights to non-technical stakeholders?

Problem-Solving & Debugging:

What would you do if your report is showing incorrect numbers?

How do you ensure the accuracy of a new KPI you introduced?

Project Management & Process Improvement:

Have you led a project to automate or improve a reporting process?

What steps do you take to ensure the timely delivery of reports?


4. Industry-Specific Questions (Credit Reporting & Financial Services)

What are some key credit risk metrics used in financial services?

How would you analyze trends in customer credit behavior?

How do you ensure compliance and data security in reporting?


5. General HR Questions

Why do you want to work at this company?

Tell me about a challenging project and how you handled it.

What are your strengths and weaknesses?

Where do you see yourself in five years?

How to Prepare?

Brush up on SQL, Power BI, and ETL tools (especially Alteryx).

Learn about key financial and credit reporting metrics.(varies company to company)

Practice explaining data-driven insights in a business-friendly manner.

Be ready to showcase problem-solving skills with real-world examples.

React with ❤️ if you want me to also post sample answer for the above questions

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
2
Beyond Data Analytics: Expanding Your Career Horizons

Once you've mastered core and advanced analytics skills, it's time to explore career growth opportunities beyond traditional data analyst roles. Here are some potential paths:

1️⃣ Data Science & AI Specialist 🤖

Dive deeper into machine learning, deep learning, and AI-powered analytics.

Learn advanced Python libraries like TensorFlow, PyTorch, and Scikit-Learn.

Work on predictive modeling, NLP, and AI automation.


2️⃣ Data Engineering 🏗️

Shift towards building scalable data infrastructure.

Master ETL pipelines, cloud databases (BigQuery, Snowflake, Redshift), and Apache Spark.

Learn Docker, Kubernetes, and Airflow for workflow automation.


3️⃣ Business Intelligence & Data Strategy 📊

Transition into high-level decision-making roles.

Become a BI Consultant or Data Strategist, focusing on storytelling and business impact.

Lead data-driven transformation projects in organizations.


4️⃣ Product Analytics & Growth Strategy 📈

Work closely with product managers to optimize user experience and engagement.

Use A/B testing, cohort analysis, and customer segmentation to drive product decisions.

Learn Mixpanel, Amplitude, and Google Analytics.


5️⃣ Data Governance & Privacy Expert 🔐

Specialize in data compliance, security, and ethical AI.

Learn about GDPR, CCPA, and industry regulations.

Work on data quality, lineage, and metadata management.


6️⃣ AI-Powered Automation & No-Code Analytics 🚀

Explore AutoML tools, AI-assisted analytics, and no-code platforms like Alteryx and DataRobot.

Automate repetitive tasks and create self-service analytics solutions for businesses.


7️⃣ Freelancing & Consulting 💼

Offer data analytics services as an independent consultant.

Build a personal brand through LinkedIn, Medium, or YouTube.

Monetize your expertise via online courses, coaching, or workshops.


8️⃣ Transitioning to Leadership Roles

Become a Data Science Manager, Head of Analytics, or Chief Data Officer.

Focus on mentoring teams, driving data strategy, and influencing business decisions.

Develop stakeholder management, communication, and leadership skills.


Mastering data analytics opens up multiple career pathways—whether in AI, business strategy, engineering, or leadership. Choose your path, keep learning, and stay ahead of industry trends! 🚀

#dataanalytics
1
Preparing for a machine learning interview as a data analyst is a great step.

Here are some common machine learning interview questions :-

1. Explain the steps involved in a machine learning project lifecycle.

2. What is the difference between supervised and unsupervised learning? Give examples of each.

3. What evaluation metrics would you use to assess the performance of a regression model?

4. What is overfitting and how can you prevent it?

5. Describe the bias-variance tradeoff.

6. What is cross-validation, and why is it important in machine learning?

7. What are some feature selection techniques you are familiar with?

8.What are the assumptions of linear regression?

9. How does regularization help in linear models?

10. Explain the difference between classification and regression.

11. What are some common algorithms used for dimensionality reduction?

12. Describe how a decision tree works.

13. What are ensemble methods, and why are they useful?

14. How do you handle missing or corrupted data in a dataset?

15. What are the different kernels used in Support Vector Machines (SVM)?


These questions cover a range of fundamental concepts and techniques in machine learning that are important for a data scientist role.
Good luck with your interview preparation!


Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Like if you need similar content 😄👍
2
Forwarded from Artificial Intelligence
𝐈𝐁𝐌 𝐅𝐑𝐄𝐄 𝐂𝐞𝐫𝐭𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧 𝐂𝐨𝐮𝐫𝐬𝐞𝐬😍

🚀 Dive into the world of Data Analytics with these 6 free courses by IBM!

Gain practical knowledge and stand out in your career with tools designed for real-world applications.

All courses come with expert guidance and are free to access!🎉

𝐋𝐢𝐧𝐤 👇:- 
 
https://bit.ly/4iXOmmb
 
Enroll For FREE & Get Certified 🎓
3
Roadmap to Become a Data Analyst:

📊 Learn Excel & Google Sheets (Formulas, Pivot Tables)
📊 Master SQL (SELECT, JOINs, CTEs, Window Functions)
📊 Learn Data Visualization (Power BI / Tableau)
📊 Understand Statistics & Probability
📊 Learn Python (Pandas, NumPy, Matplotlib, Seaborn)
📊 Work with Real Datasets (Kaggle / Public APIs)
📊 Learn Data Cleaning & Preprocessing Techniques
📊 Build Case Studies & Projects
📊 Create Portfolio & Resume
Apply for Internships / Jobs

React ❤️ for More 💼
12🔥1
Roadmap to Become a Data Analyst:

📊 Learn Excel & Google Sheets (Formulas, Pivot Tables)
📊 Master SQL (SELECT, JOINs, CTEs, Window Functions)
📊 Learn Data Visualization (Power BI / Tableau)
📊 Understand Statistics & Probability
📊 Learn Python (Pandas, NumPy, Matplotlib, Seaborn)
📊 Work with Real Datasets (Kaggle / Public APIs)
📊 Learn Data Cleaning & Preprocessing Techniques
📊 Build Case Studies & Projects
📊 Create Portfolio & Resume
Apply for Internships / Jobs

React ❤️ for More 💼
4
📊 Top 10 Data Analytics Concepts Everyone Should Know 🚀

1️⃣ Data Cleaning 🧹
Removing duplicates, fixing missing or inconsistent data.
👉 Tools: Excel, Python (Pandas), SQL

2️⃣ Descriptive Statistics 📈
Mean, median, mode, standard deviation—basic measures to summarize data.
👉 Used for understanding data distribution

3️⃣ Data Visualization 📊
Creating charts and dashboards to spot patterns.
👉 Tools: Power BI, Tableau, Matplotlib, Seaborn

4️⃣ Exploratory Data Analysis (EDA) 🔍
Identifying trends, outliers, and correlations through deep data exploration.
👉 Step before modeling

5️⃣ SQL for Data Extraction 🗃️
Querying databases to retrieve specific information.
👉 Focus on SELECT, JOIN, GROUP BY, WHERE

6️⃣ Hypothesis Testing ⚖️
Making decisions using sample data (A/B testing, p-value, confidence intervals).
👉 Useful in product or marketing experiments

7️⃣ Correlation vs Causation 🔗
Just because two things are related doesn’t mean one causes the other!

8️⃣ Data Modeling 🧠
Creating models to predict or explain outcomes.
👉 Linear regression, decision trees, clustering

9️⃣ KPIs & Metrics 🎯
Understanding business performance indicators like ROI, retention rate, churn.

🔟 Storytelling with Data 🗣️

Translating raw numbers into insights stakeholders can act on.
👉 Use clear visuals, simple language, and real-world impact

❤️ React for more
5
𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘀𝘁 𝘃𝘀 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝘁𝗶𝘀𝘁 𝘃𝘀 𝗕𝘂𝘀𝗶𝗻𝗲𝘀𝘀 𝗔𝗻𝗮𝗹𝘆𝘀𝘁 — 𝗪𝗵𝗶𝗰𝗵 𝗣𝗮𝘁𝗵 𝗶𝘀 𝗥𝗶𝗴𝗵𝘁 𝗳𝗼𝗿 𝗬𝗼𝘂? 🤔

In today’s data-driven world, career clarity can make all the difference. Whether you’re starting out in analytics, pivoting into data science, or aligning business with data as an analyst — understanding the core responsibilities, skills, and tools of each role is crucial.

🔍 Here’s a quick breakdown from a visual I often refer to when mentoring professionals:

🔹 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘀𝘁

󠁯•󠁏 Focus: Analyzing historical data to inform decisions.

󠁯•󠁏 Skills: SQL, basic stats, data visualization, reporting.

󠁯•󠁏 Tools: Excel, Tableau, Power BI, SQL.

🔹 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝘁𝗶𝘀𝘁

󠁯•󠁏 Focus: Predictive modeling, ML, complex data analysis.

󠁯•󠁏 Skills: Programming, ML, deep learning, stats.

󠁯•󠁏 Tools: Python, R, TensorFlow, Scikit-Learn, Spark.

🔹 𝗕𝘂𝘀𝗶𝗻𝗲𝘀𝘀 𝗔𝗻𝗮𝗹𝘆𝘀𝘁

󠁯•󠁏 Focus: Bridging business needs with data insights.

󠁯•󠁏 Skills: Communication, stakeholder management, process modeling.

󠁯•󠁏 Tools: Microsoft Office, BI tools, business process frameworks.

👉 𝗠𝘆 𝗔𝗱𝘃𝗶𝗰𝗲:

Start with what interests you the most and aligns with your current strengths. Are you business-savvy? Start as a Business Analyst. Love solving puzzles with data?

Explore Data Analyst. Want to build models and uncover deep insights? Head into Data Science.

🔗 𝗧𝗮𝗸𝗲 𝘁𝗶𝗺𝗲 𝘁𝗼 𝘀𝗲𝗹𝗳-𝗮𝘀𝘀𝗲𝘀𝘀 𝗮𝗻𝗱 𝗰𝗵𝗼𝗼𝘀𝗲 𝗮 𝗽𝗮𝘁𝗵 𝘁𝗵𝗮𝘁 𝗲𝗻𝗲𝗿𝗴𝗶𝘇𝗲𝘀 𝘆𝗼𝘂, not just one that’s trending.
2
If you are interested to learn SQL for data analytics purpose and clear the interviews, just cover the following topics

1)Install MYSQL workbench
2) Select
3) From
4) where
5) group by
6) having
7) limit
8) Joins (Left, right , inner, self, cross)
9) Aggregate function ( Sum, Max, Min , Avg)
9) windows function ( row num, rank, dense rank, lead, lag, Sum () over)
10)Case
11) Like
12) Sub queries
13) CTE
14) Replace CTE with temp tables
15) Methods to optimize Sql queries
16) Solve problems and case studies at Ankit Bansal youtube channel

Trick: Just copy each term and paste on youtube and watch any 10 to 15 minute on each topic and practise it while learning , By doing this , you get the basics understanding

17) Now time to go on youtube and search data analysis end to end project using sql

18) Watch them and practise them end to end.

17) learn integration with power bi

In this way , you will not only memorize the concepts but also learn how to implement them in your current working and projects and will be able to defend it in your interviews as well.

Like for more

Here you can find essential SQL Interview Resources👇
https://t.iss.one/DataSimplifier

Hope it helps :)
2
Quick SQL functions cheat sheet for beginners

Aggregate Functions

COUNT(*): Counts rows.

SUM(column): Total sum.

AVG(column): Average value.

MAX(column): Maximum value.

MIN(column): Minimum value.


String Functions

CONCAT(a, b, …): Concatenates strings.

SUBSTRING(s, start, length): Extracts part of a string.

UPPER(s) / LOWER(s): Converts string case.

TRIM(s): Removes leading/trailing spaces.


Date & Time Functions

CURRENT_DATE / CURRENT_TIME / CURRENT_TIMESTAMP: Current date/time.

EXTRACT(unit FROM date): Retrieves a date part (e.g., year, month).

DATE_ADD(date, INTERVAL n unit): Adds an interval to a date.


Numeric Functions

ROUND(num, decimals): Rounds to a specified decimal.

CEIL(num) / FLOOR(num): Rounds up/down.

ABS(num): Absolute value.

MOD(a, b): Returns the remainder.


Control Flow Functions

CASE: Conditional logic.

COALESCE(val1, val2, …): Returns the first non-null value.


Like for more free Cheatsheets ❤️

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)

#dataanalytics
2
Python for Data Analysis: Must-Know Libraries 👇👇

Python is one of the most powerful tools for Data Analysts, and these libraries will supercharge your data analysis workflow by helping you clean, manipulate, and visualize data efficiently.

🔥 Essential Python Libraries for Data Analysis:

Pandas – The go-to library for data manipulation. It helps in filtering, grouping, merging datasets, handling missing values, and transforming data into a structured format.

📌 Example: Loading a CSV file and displaying the first 5 rows:

import pandas as pd df = pd.read_csv('data.csv') print(df.head()) 


NumPy – Used for handling numerical data and performing complex calculations. It provides support for multi-dimensional arrays and efficient mathematical operations.

📌 Example: Creating an array and performing basic operations:

import numpy as np arr = np.array([10, 20, 30]) print(arr.mean()) # Calculates the average 


Matplotlib & Seaborn – These are used for creating visualizations like line graphs, bar charts, and scatter plots to understand trends and patterns in data.

📌 Example: Creating a basic bar chart:

import matplotlib.pyplot as plt plt.bar(['A', 'B', 'C'], [5, 7, 3]) plt.show() 


Scikit-Learn – A must-learn library if you want to apply machine learning techniques like regression, classification, and clustering on your dataset.

OpenPyXL – Helps in automating Excel reports using Python by reading, writing, and modifying Excel files.

💡 Challenge for You!
Try writing a Python script that:
1️⃣ Reads a CSV file
2️⃣ Cleans missing data
3️⃣ Creates a simple visualization

React with ♥️ if you want me to post the script for above challenge! ⬇️

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
2
If you want to get a job as a machine learning engineer, don’t start by diving into the hottest libraries like PyTorch,TensorFlow, Langchain, etc.

Yes, you might hear a lot about them or some other trending technology of the year...but guess what!

Technologies evolve rapidly, especially in the age of AI, but core concepts are always seen as more valuable than expertise in any particular tool. Stop trying to perform a brain surgery without knowing anything about human anatomy.

Instead, here are basic skills that will get you further than mastering any framework:


𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐚𝐧𝐝 𝐒𝐭𝐚𝐭𝐢𝐬𝐭𝐢𝐜𝐬 - My first exposure to probability and statistics was in college, and it felt abstract at the time, but these concepts are the backbone of ML.

You can start here: Khan Academy Statistics and Probability - https://www.khanacademy.org/math/statistics-probability

𝐋𝐢𝐧𝐞𝐚𝐫 𝐀𝐥𝐠𝐞𝐛𝐫𝐚 𝐚𝐧𝐝 𝐂𝐚𝐥𝐜𝐮𝐥𝐮𝐬 - Concepts like matrices, vectors, eigenvalues, and derivatives are fundamental to understanding how ml algorithms work. These are used in everything from simple regression to deep learning.

𝐏𝐫𝐨𝐠𝐫𝐚𝐦𝐦𝐢𝐧𝐠 - Should you learn Python, Rust, R, Julia, JavaScript, etc.? The best advice is to pick the language that is most frequently used for the type of work you want to do. I started with Python due to its simplicity and extensive library support, and it remains my go-to language for machine learning tasks.

You can start here: Automate the Boring Stuff with Python - https://automatetheboringstuff.com/

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝐔𝐧𝐝𝐞𝐫𝐬𝐭𝐚𝐧𝐝𝐢𝐧𝐠 - Understand the fundamental algorithms before jumping to deep learning. This includes linear regression, decision trees, SVMs, and clustering algorithms.

𝐃𝐞𝐩𝐥𝐨𝐲𝐦𝐞𝐧𝐭 𝐚𝐧𝐝 𝐏𝐫𝐨𝐝𝐮𝐜𝐭𝐢𝐨𝐧:
Knowing how to take a model from development to production is invaluable. This includes understanding APIs, model optimization, and monitoring. Tools like Docker and Flask are often used in this process.

𝐂𝐥𝐨𝐮𝐝 𝐂𝐨𝐦𝐩𝐮𝐭𝐢𝐧𝐠 𝐚𝐧𝐝 𝐁𝐢𝐠 𝐃𝐚𝐭𝐚:
Familiarity with cloud platforms (AWS, Google Cloud, Azure) and big data tools (Spark) is increasingly important as datasets grow larger. These skills help you manage and process large-scale data efficiently.

You can start here: Google Cloud Machine Learning - https://cloud.google.com/learn/training/machinelearning-ai

I love frameworks and libraries, and they can make anyone's job easier.

But the more solid your foundation, the easier it will be to pick up any new technologies and actually validate whether they solve your problems.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

All the best 👍👍
1
80% of people who start learning data analytics never land a job.

Not because they lack skill

but because they get stuck in "preparation mode."

I was almost one of them.

I spent months:
-Taking courses.
-Watching YouTube tutorials.
-Practicing SQL and Power BI.

But when it came time to publish a project or apply for jobs
I hesitated.

“I need to learn more first.”
“My portfolio isn’t ready.”
“Maybe next month.”

Sound familiar?

You don’t need more knowledge
you need more execution.

Data analysts who build & share projects are 3X more likely to get hired.

The best analysts aren’t the smartest.
They’re the ones who take action.

-They publish dashboards, even if they aren’t perfect.
-They post case studies, even when they feel like imposters.
-They apply for jobs before they "feel ready"

Stop overthinking.

Pick a dataset, build something, and share it today.

One messy project is worth more than 100 courses you never use.
5👏1
Advanced Skills to Elevate Your Data Analytics Career

1️⃣ SQL Optimization & Performance Tuning

🚀 Learn indexing, query optimization, and execution plans to handle large datasets efficiently.

2️⃣ Machine Learning Basics

🤖 Understand supervised and unsupervised learning, feature engineering, and model evaluation to enhance analytical capabilities.

3️⃣ Big Data Technologies

🏗️ Explore Spark, Hadoop, and cloud platforms like AWS, Azure, or Google Cloud for large-scale data processing.

4️⃣ Data Engineering Skills

⚙️ Learn ETL pipelines, data warehousing, and workflow automation to streamline data processing.

5️⃣ Advanced Python for Analytics

🐍 Master libraries like Scikit-Learn, TensorFlow, and Statsmodels for predictive analytics and automation.

6️⃣ A/B Testing & Experimentation

🎯 Design and analyze controlled experiments to drive data-driven decision-making.

7️⃣ Dashboard Design & UX

🎨 Build interactive dashboards with Power BI, Tableau, or Looker that enhance user experience.

8️⃣ Cloud Data Analytics

☁️ Work with cloud databases like BigQuery, Snowflake, and Redshift for scalable analytics.

9️⃣ Domain Expertise

💼 Gain industry-specific knowledge (e.g., finance, healthcare, e-commerce) to provide more relevant insights.

🔟 Soft Skills & Leadership

💡 Develop stakeholder management, storytelling, and mentorship skills to advance in your career.

Hope it helps :)

#dataanalytics
2
Excel Formulas Every Analyst Should Know

SUM(): Adds a range of numbers.

AVERAGE(): Calculates the average of a range.

VLOOKUP(): Searches for a value in the first column and returns a corresponding value.

HLOOKUP(): Searches for a value in the first row and returns a corresponding value.

INDEX(): Returns the value of a cell in a given range based on row and column numbers.

MATCH(): Finds the position of a value in a range.

IF(): Performs a logical test and returns one value for TRUE, another for FALSE.

COUNTIF(): Counts cells that meet a specific condition.

CONCATENATE(): Joins two or more text strings together.

LEFT()/RIGHT(): Extracts a specified number of characters from the left or right of a text string.

Excel Resources: t.iss.one/excel_data

I have curated best 80+ top-notch Data Analytics Resources 👇👇
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

Like this post for more content like this 👍♥️

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
3
SQL Interview Questions !!

🎗 Write a query to find all employees whose salaries exceed the company's average salary.
🎗 Write a query to retrieve the names of employees who work in the same department as 'John Doe'.
🎗 Write a query to display the second highest salary from the Employee table without using the MAX function twice.
🎗 Write a query to find all customers who have placed more than five orders.
🎗 Write a query to count the total number of orders placed by each customer.
🎗 Write a query to list employees who joined the company within the last 6 months.
🎗 Write a query to calculate the total sales amount for each product.
🎗 Write a query to list all products that have never been sold.
🎗 Write a query to remove duplicate rows from a table.
🎗 Write a query to identify the top 10 customers who have not placed any orders in the past year.

Here you can find essential SQL Interview Resources👇
https://t.iss.one/mysqldata

Like this post if you need more 👍❤️

Hope it helps :)
1
📊 Data Analyst Roadmap (2025)

Master the Skills That Top Companies Are Hiring For!

📍 1. Learn Excel / Google Sheets
Basic formulas & formatting
VLOOKUP, Pivot Tables, Charts
Data cleaning & conditional formatting

📍 2. Master SQL
SELECT, WHERE, ORDER BY
JOINs (INNER, LEFT, RIGHT)
GROUP BY, HAVING, LIMIT
Subqueries, CTEs, Window Functions

📍 3. Learn Data Visualization Tools
Power BI / Tableau (choose one)
Charts, filters, slicers
Dashboards & storytelling

📍 4. Get Comfortable with Statistics
Mean, Median, Mode, Std Dev
Probability basics
A/B Testing, Hypothesis Testing
Correlation & Regression

📍 5. Learn Python for Data Analysis (Optional but Powerful)
Pandas & NumPy for data handling
Seaborn, Matplotlib for visuals
Jupyter Notebooks for analysis

📍 6. Data Cleaning & Wrangling
Handle missing values
Fix data types, remove duplicates
Text processing & date formatting

📍 7. Understand Business Metrics
KPIs: Revenue, Churn, CAC, LTV
Think like a business analyst
Deliver actionable insights

📍 8. Communication & Storytelling
Present insights with clarity
Simplify complex data
Speak the language of stakeholders

📍 9. Version Control (Git & GitHub)
Track your projects
Build a data portfolio
Collaborate with the community

📍 10. Interview & Resume Preparation
Excel, SQL, case-based questions
Mock interviews + real projects
Resume with measurable achievements

React ❤️ for more
5
Step-by-Step Approach to Learn Data Analytics

➊ Learn Programming Language → SQL & Python

Master Excel & Spreadsheets → Pivot Tables, VLOOKUP, Data Cleaning

SQL for Data Analysis → SELECT, JOINS, GROUP BY, Window Functions

Data Manipulation & Processing → Pandas, NumPy

Data Visualization → Power BI, Tableau, Matplotlib, Seaborn

➏ Exploratory Data Analysis (EDA) → Missing Values, Outliers, Feature Engineering

➐ Business Intelligence & Reporting → Dashboards, Storytelling with Data

➑ Advanced Concepts → A/B Testing, Statistical Analysis, Machine Learning Basics

React with ❤️ for detailed explanation

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
1
📊 Data Analyst Roadmap (2025)

Master the Skills That Top Companies Are Hiring For!

📍 1. Learn Excel / Google Sheets
Basic formulas & formatting
VLOOKUP, Pivot Tables, Charts
Data cleaning & conditional formatting

📍 2. Master SQL
SELECT, WHERE, ORDER BY
JOINs (INNER, LEFT, RIGHT)
GROUP BY, HAVING, LIMIT
Subqueries, CTEs, Window Functions

📍 3. Learn Data Visualization Tools
Power BI / Tableau (choose one)
Charts, filters, slicers
Dashboards & storytelling

📍 4. Get Comfortable with Statistics
Mean, Median, Mode, Std Dev
Probability basics
A/B Testing, Hypothesis Testing
Correlation & Regression

📍 5. Learn Python for Data Analysis (Optional but Powerful)
Pandas & NumPy for data handling
Seaborn, Matplotlib for visuals
Jupyter Notebooks for analysis

📍 6. Data Cleaning & Wrangling
Handle missing values
Fix data types, remove duplicates
Text processing & date formatting

📍 7. Understand Business Metrics
KPIs: Revenue, Churn, CAC, LTV
Think like a business analyst
Deliver actionable insights

📍 8. Communication & Storytelling
Present insights with clarity
Simplify complex data
Speak the language of stakeholders

📍 9. Version Control (Git & GitHub)
Track your projects
Build a data portfolio
Collaborate with the community

📍 10. Interview & Resume Preparation
Excel, SQL, case-based questions
Mock interviews + real projects
Resume with measurable achievements

React ❤️ for more
4
SQL Advanced Concepts for Data Analyst Interviews

1. Window Functions: Gain proficiency in window functions like ROW_NUMBER(), RANK(), DENSE_RANK(), NTILE(), and LAG()/LEAD(). These functions allow you to perform calculations across a set of table rows related to the current row without collapsing the result set into a single output.

2. Common Table Expressions (CTEs): Understand how to use CTEs with the WITH clause to create temporary result sets that can be referenced within a SELECT, INSERT, UPDATE, or DELETE statement. CTEs improve the readability and maintainability of complex queries.

3. Recursive CTEs: Learn how to use recursive CTEs to solve hierarchical or recursive data problems, such as navigating organizational charts or bill-of-materials structures.

4. Advanced Joins: Master complex join techniques, including self-joins (joining a table with itself), cross joins (Cartesian product), and using multiple joins in a single query.

5. Subqueries and Correlated Subqueries: Be adept at writing subqueries that return a single value or a set of values. Correlated subqueries, which reference columns from the outer query, are particularly powerful for row-by-row operations.

6. Indexing Strategies: Learn advanced indexing strategies, such as covering indexes, composite indexes, and partial indexes. Understand how to optimize query performance by designing the right indexes and when to use CLUSTERED versus NON-CLUSTERED indexes.

7. Query Optimization and Execution Plans: Develop skills in reading and interpreting SQL execution plans to understand how queries are executed. Use tools like EXPLAIN or EXPLAIN ANALYZE to identify performance bottlenecks and optimize query performance.

8. Stored Procedures: Understand how to create and use stored procedures to encapsulate complex SQL logic into reusable, modular code. Learn how to pass parameters, handle errors, and return multiple result sets from a stored procedure.

9. Triggers: Learn how to create triggers to automatically execute a specified action in response to certain events on a table (e.g., AFTER INSERT, BEFORE UPDATE). Triggers are useful for maintaining data integrity and automating workflows.

10. Transactions and Isolation Levels: Master the use of transactions to ensure that a series of SQL operations are executed as a single unit of work. Understand different isolation levels (READ UNCOMMITTED, READ COMMITTED, REPEATABLE READ, SERIALIZABLE) and their impact on data consistency and concurrency.

11. PIVOT and UNPIVOT: Use the PIVOT operator to transform row data into columnar data and UNPIVOT to convert columns back into rows. These operations are crucial for reshaping data for reporting and analysis.

12. Dynamic SQL: Learn how to write dynamic SQL queries that are constructed and executed at runtime. This is useful when the exact SQL query cannot be determined until runtime, such as in scenarios involving user-defined filters or conditional logic.

13. Data Partitioning: Understand how to implement data partitioning strategies, such as range partitioning or list partitioning, to manage large tables efficiently. Partitioning can significantly improve query performance and manageability.

14. Temporary Tables: Learn how to create and use temporary tables to store intermediate results within a session. Understand the differences between local and global temporary tables, and when to use them.

15. Materialized Views: Use materialized views to store the result of a query physically and update it periodically. This can drastically improve performance for complex queries that need to be executed frequently.

16. Handling Complex Data Types: Understand how to work with complex data types such as JSON, XML, and arrays. Learn how to store, query, and manipulate these types in SQL databases, including using functions like JSON_EXTRACT(), XMLQUERY(), or array functions.

Here you can find SQL Interview Resources👇
https://t.iss.one/DataSimplifier

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
4