Python Interview Questions for data analyst interview
Question 1: Find the top 5 dates when the percentage change in Company A's stock price was the highest.
Question 2: Calculate the annualized volatility of Company B's stock price. (Hint: Annualized volatility is the standard deviation of daily returns multiplied by the square root of the number of trading days in a year.)
Question 3: Identify the longest streaks of consecutive days when the stock price of Company A was either increasing or decreasing continuously.
Question 4: Create a new column that represents the cumulative returns of Company A's stock price over the year.
Question 5: Calculate the 7-day rolling average of both Company A's and Company B's stock prices and find the date when the two rolling averages were closest to each other.
Question 6: Create a new DataFrame that contains only the dates when Company A's stock price was above its 50-day moving average, and Company B's stock price was below its 50-day moving average
Question 1: Find the top 5 dates when the percentage change in Company A's stock price was the highest.
Question 2: Calculate the annualized volatility of Company B's stock price. (Hint: Annualized volatility is the standard deviation of daily returns multiplied by the square root of the number of trading days in a year.)
Question 3: Identify the longest streaks of consecutive days when the stock price of Company A was either increasing or decreasing continuously.
Question 4: Create a new column that represents the cumulative returns of Company A's stock price over the year.
Question 5: Calculate the 7-day rolling average of both Company A's and Company B's stock prices and find the date when the two rolling averages were closest to each other.
Question 6: Create a new DataFrame that contains only the dates when Company A's stock price was above its 50-day moving average, and Company B's stock price was below its 50-day moving average
๐6โค1
Data Analyst Interview Questions
[Python, SQL, PowerBI]
1. Is indentation required in python?
Ans: Indentation is necessary for Python. It specifies a block of code. All code within loops, classes, functions, etc is specified within an indented block. It is usually done using four space characters. If your code is not indented necessarily, it will not execute accurately and will throw errors as well.
2. What are Entities and Relationships?
Ans:
Entity: An entity can be a real-world object that can be easily identifiable. For example, in a college database, students, professors, workers, departments, and projects can be referred to as entities.
Relationships: Relations or links between entities that have something to do with each other. For example โ The employeeโs table in a companyโs database can be associated with the salary table in the same database.
3. What are Aggregate and Scalar functions?
Ans: An aggregate function performs operations on a collection of values to return a single scalar value. Aggregate functions are often used with the GROUP BY and HAVING clauses of the SELECT statement. A scalar function returns a single value based on the input value.
4. What are Custom Visuals in Power BI?
Ans: Custom Visuals are like any other visualizations, generated using Power BI. The only difference is that it develops the custom visuals using a custom SDK. The languages like JQuery and JavaScript are used to create custom visuals in Power BI
ENJOY LEARNING ๐๐
[Python, SQL, PowerBI]
1. Is indentation required in python?
Ans: Indentation is necessary for Python. It specifies a block of code. All code within loops, classes, functions, etc is specified within an indented block. It is usually done using four space characters. If your code is not indented necessarily, it will not execute accurately and will throw errors as well.
2. What are Entities and Relationships?
Ans:
Entity: An entity can be a real-world object that can be easily identifiable. For example, in a college database, students, professors, workers, departments, and projects can be referred to as entities.
Relationships: Relations or links between entities that have something to do with each other. For example โ The employeeโs table in a companyโs database can be associated with the salary table in the same database.
3. What are Aggregate and Scalar functions?
Ans: An aggregate function performs operations on a collection of values to return a single scalar value. Aggregate functions are often used with the GROUP BY and HAVING clauses of the SELECT statement. A scalar function returns a single value based on the input value.
4. What are Custom Visuals in Power BI?
Ans: Custom Visuals are like any other visualizations, generated using Power BI. The only difference is that it develops the custom visuals using a custom SDK. The languages like JQuery and JavaScript are used to create custom visuals in Power BI
ENJOY LEARNING ๐๐
๐4โค1
The best way to learn data analytics skills is to:
1. Watch a tutorial
2. Immediately practice what you just learned
3. Do projects to apply your learning to real-life applications
If you only watch videos and never practice, you wonโt retain any of your teaching.
If you never apply your learning with projects, you wonโt be able to solve problems on the job. (You also will have a much harder time attracting recruiters without a recruiter.)
1. Watch a tutorial
2. Immediately practice what you just learned
3. Do projects to apply your learning to real-life applications
If you only watch videos and never practice, you wonโt retain any of your teaching.
If you never apply your learning with projects, you wonโt be able to solve problems on the job. (You also will have a much harder time attracting recruiters without a recruiter.)
๐5๐ฅ1
Complete Syllabus for Data Analytics interview:
SQL:
1. Basic
- SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Creating and using simple databases and tables
2. Intermediate
- Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Subqueries and nested queries
- Common Table Expressions (WITH clause)
- CASE statements for conditional logic in queries
3. Advanced
- Advanced JOIN techniques (self-join, non-equi join)
- Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- optimization with indexing
- Data manipulation (INSERT, UPDATE, DELETE)
Python:
1. Basic
- Syntax, variables, data types (integers, floats, strings, booleans)
- Control structures (if-else, for and while loops)
- Basic data structures (lists, dictionaries, sets, tuples)
- Functions, lambda functions, error handling (try-except)
- Modules and packages
2. Pandas & Numpy
- Creating and manipulating DataFrames and Series
- Indexing, selecting, and filtering data
- Handling missing data (fillna, dropna)
- Data aggregation with groupby, summarizing data
- Merging, joining, and concatenating datasets
3. Basic Visualization
- Basic plotting with Matplotlib (line plots, bar plots, histograms)
- Visualization with Seaborn (scatter plots, box plots, pair plots)
- Customizing plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)
Excel:
1. Basic
- Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Introduction to charts and basic data visualization
- Data sorting and filtering
- Conditional formatting
2. Intermediate
- Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- PivotTables and PivotCharts for summarizing data
- Data validation tools
- What-if analysis tools (Data Tables, Goal Seek)
3. Advanced
- Array formulas and advanced functions
- Data Model & Power Pivot
- Advanced Filter
- Slicers and Timelines in Pivot Tables
- Dynamic charts and interactive dashboards
Power BI:
1. Data Modeling
- Importing data from various sources
- Creating and managing relationships between different datasets
- Data modeling basics (star schema, snowflake schema)
2. Data Transformation
- Using Power Query for data cleaning and transformation
- Advanced data shaping techniques
- Calculated columns and measures using DAX
3. Data Visualization and Reporting - Creating interactive reports and dashboards
- Visualizations (bar, line, pie charts, maps)
- Publishing and sharing reports, scheduling data refreshes
Statistics Fundamentals: Mean, Median, Mode, Standard Deviation, Variance, Probability Distributions, Hypothesis Testing, P-values, Confidence Intervals, Correlation, Simple Linear Regression, Normal Distribution, Binomial Distribution, Poisson Distribution.
Like for more ๐โค๏ธ
SQL:
1. Basic
- SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Creating and using simple databases and tables
2. Intermediate
- Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Subqueries and nested queries
- Common Table Expressions (WITH clause)
- CASE statements for conditional logic in queries
3. Advanced
- Advanced JOIN techniques (self-join, non-equi join)
- Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- optimization with indexing
- Data manipulation (INSERT, UPDATE, DELETE)
Python:
1. Basic
- Syntax, variables, data types (integers, floats, strings, booleans)
- Control structures (if-else, for and while loops)
- Basic data structures (lists, dictionaries, sets, tuples)
- Functions, lambda functions, error handling (try-except)
- Modules and packages
2. Pandas & Numpy
- Creating and manipulating DataFrames and Series
- Indexing, selecting, and filtering data
- Handling missing data (fillna, dropna)
- Data aggregation with groupby, summarizing data
- Merging, joining, and concatenating datasets
3. Basic Visualization
- Basic plotting with Matplotlib (line plots, bar plots, histograms)
- Visualization with Seaborn (scatter plots, box plots, pair plots)
- Customizing plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)
Excel:
1. Basic
- Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Introduction to charts and basic data visualization
- Data sorting and filtering
- Conditional formatting
2. Intermediate
- Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- PivotTables and PivotCharts for summarizing data
- Data validation tools
- What-if analysis tools (Data Tables, Goal Seek)
3. Advanced
- Array formulas and advanced functions
- Data Model & Power Pivot
- Advanced Filter
- Slicers and Timelines in Pivot Tables
- Dynamic charts and interactive dashboards
Power BI:
1. Data Modeling
- Importing data from various sources
- Creating and managing relationships between different datasets
- Data modeling basics (star schema, snowflake schema)
2. Data Transformation
- Using Power Query for data cleaning and transformation
- Advanced data shaping techniques
- Calculated columns and measures using DAX
3. Data Visualization and Reporting - Creating interactive reports and dashboards
- Visualizations (bar, line, pie charts, maps)
- Publishing and sharing reports, scheduling data refreshes
Statistics Fundamentals: Mean, Median, Mode, Standard Deviation, Variance, Probability Distributions, Hypothesis Testing, P-values, Confidence Intervals, Correlation, Simple Linear Regression, Normal Distribution, Binomial Distribution, Poisson Distribution.
Like for more ๐โค๏ธ
๐5โค3
Hey guys,
Here are some best Telegram Channels for free education in 2025
๐๐
Free Courses with Certificate
Web Development Free Resources
Data Science & Machine Learning
Programming Free Books
Python Free Courses
Ethical Hacking & Cyber Security
English Speaking & Communication
Stock Marketing & Investment Banking
Coding Projects
Jobs & Internship Opportunities
Crack your coding Interviews
Udemy Free Courses with Certificate
ChatGPT Prompts
AI Projects
Free access to all the Paid Channels
๐๐
https://t.iss.one/addlist/4q2PYC0pH_VjZDk5
Do react with โฅ๏ธ if you need more content like this
ENJOY LEARNING ๐๐
Here are some best Telegram Channels for free education in 2025
๐๐
Free Courses with Certificate
Web Development Free Resources
Data Science & Machine Learning
Programming Free Books
Python Free Courses
Ethical Hacking & Cyber Security
English Speaking & Communication
Stock Marketing & Investment Banking
Coding Projects
Jobs & Internship Opportunities
Crack your coding Interviews
Udemy Free Courses with Certificate
ChatGPT Prompts
AI Projects
Free access to all the Paid Channels
๐๐
https://t.iss.one/addlist/4q2PYC0pH_VjZDk5
Do react with โฅ๏ธ if you need more content like this
ENJOY LEARNING ๐๐
โค2๐2
Essentials for Acing any Data Analytics Interviews-
SQL:
1. Beginner
- Fundamentals: SELECT, WHERE, ORDER BY, GROUP BY, HAVING
- Essential JOINS: INNER, LEFT, RIGHT, FULL
- Basics of database and table creation
2. Intermediate
- Aggregate functions: COUNT, SUM, AVG, MAX, MIN
- Subqueries and nested queries
- Common Table Expressions with the WITH clause
- Conditional logic in queries using CASE statements
3. Advanced
- Complex JOIN techniques: self-join, non-equi join
- Window functions: OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag
- Query optimization through indexing
- Manipulating data: INSERT, UPDATE, DELETE
Python:
1. Basics
- Understanding syntax, variables, and data types: integers, floats, strings, booleans
- Control structures: if-else, loops (for, while)
- Core data structures: lists, dictionaries, sets, tuples
- Functions and error handling: lambda functions, try-except
- Using modules and packages
2. Pandas & Numpy
- DataFrames and Series: creation and manipulation
- Techniques: indexing, selecting, filtering
- Handling missing data with fillna and dropna
- Data aggregation: groupby, data summarizing
- Data merging techniques: merge, join, concatenate
3. Visualization
- Plotting basics with Matplotlib: line plots, bar plots, histograms
- Advanced visualization with Seaborn: scatter plots, box plots, pair plots
- Plot customization: sizes, labels, legends, colors
- Introduction to interactive visualizations with Plotly
Excel:
1. Basics
- Cell operations and basic formulas: SUMIFS, COUNTIFS, AVERAGEIFS
- Charts and introductory data visualization
- Data sorting and filtering, Conditional formatting
2. Intermediate
- Advanced formulas: V/XLOOKUP, INDEX-MATCH, complex IF scenarios
- Summarizing data with PivotTables and PivotCharts
- Tools for data validation and what-if analysis: Data Tables, Goal Seek
3. Advanced
- Utilizing array formulas and sophisticated functions
- Building a Data Model & using Power Pivot
- Advanced filtering, Slicers and Timelines in Pivot Tables
- Crafting dynamic charts and interactive dashboards
Power BI:
1. Data Modeling
- Importing data from diverse sources
- Creating and managing dataset relationships
- Data modeling essentials: star schema, snowflake schema
2. Data Transformation
- Data cleaning and transformation with Power Query
- Advanced data shaping techniques
- Implementing calculated columns and measures with DAX
3. Data Visualization and Reporting
- Developing interactive reports and dashboards
- Visualization types: bar, line, pie charts, maps
- Report publishing and sharing, scheduling data refreshes
Statistics:
Mean, Median, Mode, Standard Deviation, Variance, Probability Distributions, Hypothesis Testing, P-values, Confidence Intervals, Correlation, Simple Linear Regression, Normal Distribution, Binomial Distribution, Poisson Distribution
SQL:
1. Beginner
- Fundamentals: SELECT, WHERE, ORDER BY, GROUP BY, HAVING
- Essential JOINS: INNER, LEFT, RIGHT, FULL
- Basics of database and table creation
2. Intermediate
- Aggregate functions: COUNT, SUM, AVG, MAX, MIN
- Subqueries and nested queries
- Common Table Expressions with the WITH clause
- Conditional logic in queries using CASE statements
3. Advanced
- Complex JOIN techniques: self-join, non-equi join
- Window functions: OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag
- Query optimization through indexing
- Manipulating data: INSERT, UPDATE, DELETE
Python:
1. Basics
- Understanding syntax, variables, and data types: integers, floats, strings, booleans
- Control structures: if-else, loops (for, while)
- Core data structures: lists, dictionaries, sets, tuples
- Functions and error handling: lambda functions, try-except
- Using modules and packages
2. Pandas & Numpy
- DataFrames and Series: creation and manipulation
- Techniques: indexing, selecting, filtering
- Handling missing data with fillna and dropna
- Data aggregation: groupby, data summarizing
- Data merging techniques: merge, join, concatenate
3. Visualization
- Plotting basics with Matplotlib: line plots, bar plots, histograms
- Advanced visualization with Seaborn: scatter plots, box plots, pair plots
- Plot customization: sizes, labels, legends, colors
- Introduction to interactive visualizations with Plotly
Excel:
1. Basics
- Cell operations and basic formulas: SUMIFS, COUNTIFS, AVERAGEIFS
- Charts and introductory data visualization
- Data sorting and filtering, Conditional formatting
2. Intermediate
- Advanced formulas: V/XLOOKUP, INDEX-MATCH, complex IF scenarios
- Summarizing data with PivotTables and PivotCharts
- Tools for data validation and what-if analysis: Data Tables, Goal Seek
3. Advanced
- Utilizing array formulas and sophisticated functions
- Building a Data Model & using Power Pivot
- Advanced filtering, Slicers and Timelines in Pivot Tables
- Crafting dynamic charts and interactive dashboards
Power BI:
1. Data Modeling
- Importing data from diverse sources
- Creating and managing dataset relationships
- Data modeling essentials: star schema, snowflake schema
2. Data Transformation
- Data cleaning and transformation with Power Query
- Advanced data shaping techniques
- Implementing calculated columns and measures with DAX
3. Data Visualization and Reporting
- Developing interactive reports and dashboards
- Visualization types: bar, line, pie charts, maps
- Report publishing and sharing, scheduling data refreshes
Statistics:
Mean, Median, Mode, Standard Deviation, Variance, Probability Distributions, Hypothesis Testing, P-values, Confidence Intervals, Correlation, Simple Linear Regression, Normal Distribution, Binomial Distribution, Poisson Distribution
๐4โค2
Creating a one-month data analytics roadmap requires a focused approach to cover essential concepts and skills. Here's a structured plan along with free resources:
๐๏ธWeek 1: Foundation of Data Analytics
โพDay 1-2: Basics of Data Analytics
Resource: Khan Academy's Introduction to Statistics
Focus Areas: Understand descriptive statistics, types of data, and data distributions.
โพDay 3-4: Excel for Data Analysis
Resource: Microsoft Excel tutorials on YouTube or Excel Easy
Focus Areas: Learn essential Excel functions for data manipulation and analysis.
โพDay 5-7: Introduction to Python for Data Analysis
Resource: Codecademy's Python course or Google's Python Class
Focus Areas: Basic Python syntax, data structures, and libraries like NumPy and Pandas.
๐๏ธWeek 2: Intermediate Data Analytics Skills
โพDay 8-10: Data Visualization
Resource: Data Visualization with Matplotlib and Seaborn tutorials
Focus Areas: Creating effective charts and graphs to communicate insights.
โพDay 11-12: Exploratory Data Analysis (EDA)
Resource: Towards Data Science articles on EDA techniques
Focus Areas: Techniques to summarize and explore datasets.
โพDay 13-14: SQL Fundamentals
Resource: Mode Analytics SQL Tutorial or SQLZoo
Focus Areas: Writing SQL queries for data manipulation.
๐๏ธWeek 3: Advanced Techniques and Tools
โพDay 15-17: Machine Learning Basics
Resource: Andrew Ng's Machine Learning course on Coursera
Focus Areas: Understand key ML concepts like supervised learning and evaluation metrics.
โพDay 18-20: Data Cleaning and Preprocessing
Resource: Data Cleaning with Python by Packt
Focus Areas: Techniques to handle missing data, outliers, and normalization.
โพDay 21-22: Introduction to Big Data
Resource: Big Data University's courses on Hadoop and Spark
Focus Areas: Basics of distributed computing and big data technologies.
๐๏ธWeek 4: Projects and Practice
โพDay 23-25: Real-World Data Analytics Projects
Resource: Kaggle datasets and competitions
Focus Areas: Apply learned skills to solve practical problems.
โพDay 26-28: Online Webinars and Community Engagement
Resource: Data Science meetups and webinars (Meetup.com, Eventbrite)
Focus Areas: Networking and learning from industry experts.
โพDay 29-30: Portfolio Building and Review
Activity: Create a GitHub repository showcasing projects and code
Focus Areas: Present projects and skills effectively for job applications.
๐Additional Resources:
Books: "Python for Data Analysis" by Wes McKinney, "Data Science from Scratch" by Joel Grus.
Online Platforms: DataSimplifier, Kaggle, Towards Data Science
Tailor this roadmap to your learning pace and adjust the resources based on your preferences. Consistent practice and hands-on projects are crucial for mastering data analytics within a month. Good luck!
๐๏ธWeek 1: Foundation of Data Analytics
โพDay 1-2: Basics of Data Analytics
Resource: Khan Academy's Introduction to Statistics
Focus Areas: Understand descriptive statistics, types of data, and data distributions.
โพDay 3-4: Excel for Data Analysis
Resource: Microsoft Excel tutorials on YouTube or Excel Easy
Focus Areas: Learn essential Excel functions for data manipulation and analysis.
โพDay 5-7: Introduction to Python for Data Analysis
Resource: Codecademy's Python course or Google's Python Class
Focus Areas: Basic Python syntax, data structures, and libraries like NumPy and Pandas.
๐๏ธWeek 2: Intermediate Data Analytics Skills
โพDay 8-10: Data Visualization
Resource: Data Visualization with Matplotlib and Seaborn tutorials
Focus Areas: Creating effective charts and graphs to communicate insights.
โพDay 11-12: Exploratory Data Analysis (EDA)
Resource: Towards Data Science articles on EDA techniques
Focus Areas: Techniques to summarize and explore datasets.
โพDay 13-14: SQL Fundamentals
Resource: Mode Analytics SQL Tutorial or SQLZoo
Focus Areas: Writing SQL queries for data manipulation.
๐๏ธWeek 3: Advanced Techniques and Tools
โพDay 15-17: Machine Learning Basics
Resource: Andrew Ng's Machine Learning course on Coursera
Focus Areas: Understand key ML concepts like supervised learning and evaluation metrics.
โพDay 18-20: Data Cleaning and Preprocessing
Resource: Data Cleaning with Python by Packt
Focus Areas: Techniques to handle missing data, outliers, and normalization.
โพDay 21-22: Introduction to Big Data
Resource: Big Data University's courses on Hadoop and Spark
Focus Areas: Basics of distributed computing and big data technologies.
๐๏ธWeek 4: Projects and Practice
โพDay 23-25: Real-World Data Analytics Projects
Resource: Kaggle datasets and competitions
Focus Areas: Apply learned skills to solve practical problems.
โพDay 26-28: Online Webinars and Community Engagement
Resource: Data Science meetups and webinars (Meetup.com, Eventbrite)
Focus Areas: Networking and learning from industry experts.
โพDay 29-30: Portfolio Building and Review
Activity: Create a GitHub repository showcasing projects and code
Focus Areas: Present projects and skills effectively for job applications.
๐Additional Resources:
Books: "Python for Data Analysis" by Wes McKinney, "Data Science from Scratch" by Joel Grus.
Online Platforms: DataSimplifier, Kaggle, Towards Data Science
Tailor this roadmap to your learning pace and adjust the resources based on your preferences. Consistent practice and hands-on projects are crucial for mastering data analytics within a month. Good luck!
๐2
I have uploaded a lot of free resources on Linkedin as well
๐๐
https://www.linkedin.com/company/sql-analysts/
We're just 6k followers away from reaching 200k on LinkedIn! โค๏ธ Join us and be part of this milestone!
๐๐
https://www.linkedin.com/company/sql-analysts/
We're just 6k followers away from reaching 200k on LinkedIn! โค๏ธ Join us and be part of this milestone!
โค2๐2
โ
๐๐จ๐ฐ ๐ญ๐จ ๐๐ฎ๐ข๐ฅ๐ ๐ ๐๐๐ซ๐๐๐ซ ๐๐ฌ ๐ ๐๐๐ญ๐ ๐๐ง๐๐ฅ๐ฒ๐ฌ๐ญ ๐ข๐ง ๐๐๐๐ ๐งโ๐ป
If you are thinking about becoming a data analyst, 2025 is the perfect year to start. Companies need people who can understand data and turn it into useful insights. Hereโs a simple step-by-step guide to help you start your journey.
๐. ๐๐๐ญ๐ ๐๐ง๐๐ฅ๐ฒ๐ฌ๐ญ ๐๐จ๐ฅ๐
A data analyst collects and studies data to help companies make better decisions. They find trends, create reports, and suggest solutions to business problems.
๐. ๐๐๐๐ซ๐ง ๐๐๐๐๐ฌ๐ฌ๐๐ซ๐ฒ ๐๐ค๐ข๐ฅ๐ฅ๐ฌ
๐๐ฑ๐๐๐ฅ: Start with PivotTables, VLOOKUP, and creating dashboards.
๐๐๐: Master queries to extract and manipulate data.
๐๐๐ญ๐ ๐๐ข๐ฌ๐ฎ๐๐ฅ๐ข๐ณ๐๐ญ๐ข๐จ๐ง ๐๐จ๐จ๐ฅ๐ฌ: Learn Power BI and Tableau to present insights effectively.
๐๐ฒ๐ญ๐ก๐จ๐ง: Focus on libraries like Pandas, NumPy, Matplotlib, and Seaborn.
๐๐ญ๐๐ญ๐ข๐ฌ๐ญ๐ข๐๐ฌ: Basic concepts- mean, median, mode, standard deviation, regression.
๐. ๐๐จ๐ซ๐ค ๐จ๐ง ๐๐ซ๐จ๐ฃ๐๐๐ญ๐ฌ
https://t.iss.one/sqlproject
https://t.iss.one/pythonspecialist
๐. ๐๐๐ข๐ง ๐๐๐ซ๐ญ๐ข๐๐ข๐๐๐ญ๐ข๐จ๐ง
Certifications add credibility to your resume. Some popular ones include:
Google Data Analytics Professional Certificate
Microsoft Certified: Data Analyst Associate
Tableau Desktop Specialist Certification
๐. ๐๐ซ๐๐๐ญ๐ ๐๐จ๐ซ๐ญ๐๐จ๐ฅ๐ข๐จ
๐๐ข๐ง๐ค๐๐๐๐ง: Treat your LinkedIn profile as your portfolio. Update it with skills, certifications, and projects.
๐๐ข๐ญ๐๐ฎ๐: Add links to your GitHub repositories with coding projects and Power BI/Tableau dashboards.
๐. ๐๐๐ข๐ง ๐๐ซ๐๐๐ญ๐ข๐๐๐ฅ ๐๐ฑ๐ฉ๐๐ซ๐ข๐๐ง๐๐ (๐ ๐จ๐ซ ๐ ๐ซ๐๐ฌ๐ก๐๐ซ๐ฌ)
If you're a fresher, here are some ideas to gain experience:
๐๐ง๐ญ๐๐ซ๐ง๐ฌ๐ก๐ข๐ฉ๐ฌ: Apply for internships at companies where you can work on real data problems.
๐ ๐ซ๐๐๐ฅ๐๐ง๐๐ข๐ง๐ : Offer data analysis services on platforms like Upwork, Fiverr, or Freelancer.
๐๐๐ซ๐ฌ๐จ๐ง๐๐ฅ ๐๐ซ๐จ๐ฃ๐๐๐ญ๐ฌ: Build your own projects, such as analyzing public datasets (e.g., from Kaggle), and share them on GitHub.
๐๐ง๐ฅ๐ข๐ง๐ ๐๐จ๐ฆ๐ฉ๐๐ญ๐ข๐ญ๐ข๐จ๐ง๐ฌ: Participate in data analysis competitions on Kaggle or DrivenData to build your skills and gain recognition.
๐๐ฉ๐๐ง-๐๐จ๐ฎ๐ซ๐๐: Contribute to open-source data analysis projects on GitHub.
๐. ๐๐ญ๐๐ซ๐ญ ๐๐ฉ๐ฉ๐ฅ๐ฒ๐ข๐ง๐ ๐๐จ๐ซ ๐๐จ๐๐ฌ
Tailor your resume and portfolio for each role. Highlight projects and key skills. Consider entry-level roles like:
Junior Data Analyst, Business Analyst, Reporting Analyst
Use platforms like LinkedIn & Naukri to apply for jobs.
If you are thinking about becoming a data analyst, 2025 is the perfect year to start. Companies need people who can understand data and turn it into useful insights. Hereโs a simple step-by-step guide to help you start your journey.
๐. ๐๐๐ญ๐ ๐๐ง๐๐ฅ๐ฒ๐ฌ๐ญ ๐๐จ๐ฅ๐
A data analyst collects and studies data to help companies make better decisions. They find trends, create reports, and suggest solutions to business problems.
๐. ๐๐๐๐ซ๐ง ๐๐๐๐๐ฌ๐ฌ๐๐ซ๐ฒ ๐๐ค๐ข๐ฅ๐ฅ๐ฌ
๐๐ฑ๐๐๐ฅ: Start with PivotTables, VLOOKUP, and creating dashboards.
๐๐๐: Master queries to extract and manipulate data.
๐๐๐ญ๐ ๐๐ข๐ฌ๐ฎ๐๐ฅ๐ข๐ณ๐๐ญ๐ข๐จ๐ง ๐๐จ๐จ๐ฅ๐ฌ: Learn Power BI and Tableau to present insights effectively.
๐๐ฒ๐ญ๐ก๐จ๐ง: Focus on libraries like Pandas, NumPy, Matplotlib, and Seaborn.
๐๐ญ๐๐ญ๐ข๐ฌ๐ญ๐ข๐๐ฌ: Basic concepts- mean, median, mode, standard deviation, regression.
๐. ๐๐จ๐ซ๐ค ๐จ๐ง ๐๐ซ๐จ๐ฃ๐๐๐ญ๐ฌ
https://t.iss.one/sqlproject
https://t.iss.one/pythonspecialist
๐. ๐๐๐ข๐ง ๐๐๐ซ๐ญ๐ข๐๐ข๐๐๐ญ๐ข๐จ๐ง
Certifications add credibility to your resume. Some popular ones include:
Google Data Analytics Professional Certificate
Microsoft Certified: Data Analyst Associate
Tableau Desktop Specialist Certification
๐. ๐๐ซ๐๐๐ญ๐ ๐๐จ๐ซ๐ญ๐๐จ๐ฅ๐ข๐จ
๐๐ข๐ง๐ค๐๐๐๐ง: Treat your LinkedIn profile as your portfolio. Update it with skills, certifications, and projects.
๐๐ข๐ญ๐๐ฎ๐: Add links to your GitHub repositories with coding projects and Power BI/Tableau dashboards.
๐. ๐๐๐ข๐ง ๐๐ซ๐๐๐ญ๐ข๐๐๐ฅ ๐๐ฑ๐ฉ๐๐ซ๐ข๐๐ง๐๐ (๐ ๐จ๐ซ ๐ ๐ซ๐๐ฌ๐ก๐๐ซ๐ฌ)
If you're a fresher, here are some ideas to gain experience:
๐๐ง๐ญ๐๐ซ๐ง๐ฌ๐ก๐ข๐ฉ๐ฌ: Apply for internships at companies where you can work on real data problems.
๐ ๐ซ๐๐๐ฅ๐๐ง๐๐ข๐ง๐ : Offer data analysis services on platforms like Upwork, Fiverr, or Freelancer.
๐๐๐ซ๐ฌ๐จ๐ง๐๐ฅ ๐๐ซ๐จ๐ฃ๐๐๐ญ๐ฌ: Build your own projects, such as analyzing public datasets (e.g., from Kaggle), and share them on GitHub.
๐๐ง๐ฅ๐ข๐ง๐ ๐๐จ๐ฆ๐ฉ๐๐ญ๐ข๐ญ๐ข๐จ๐ง๐ฌ: Participate in data analysis competitions on Kaggle or DrivenData to build your skills and gain recognition.
๐๐ฉ๐๐ง-๐๐จ๐ฎ๐ซ๐๐: Contribute to open-source data analysis projects on GitHub.
๐. ๐๐ญ๐๐ซ๐ญ ๐๐ฉ๐ฉ๐ฅ๐ฒ๐ข๐ง๐ ๐๐จ๐ซ ๐๐จ๐๐ฌ
Tailor your resume and portfolio for each role. Highlight projects and key skills. Consider entry-level roles like:
Junior Data Analyst, Business Analyst, Reporting Analyst
Use platforms like LinkedIn & Naukri to apply for jobs.
๐2โค1
Free Session to learn Data Analytics, Data Science & AI
๐๐
https://tracking.acciojob.com/g/PUfdDxgHR
Register fast, only for first few users
๐๐
https://tracking.acciojob.com/g/PUfdDxgHR
Register fast, only for first few users
๐2
Basic SQL Commands โ
โค2๐ฅ2
5 Data Analytics Project Ideas to boost your resume:
1. Stock Market Portfolio Optimization
2. YouTube Data Collection & Analysis
3. Elections Ad Spending & Voting Patterns Analysis
4. EV Market Size Analysis
5. Metro Operations Optimization
1. Stock Market Portfolio Optimization
2. YouTube Data Collection & Analysis
3. Elections Ad Spending & Voting Patterns Analysis
4. EV Market Size Analysis
5. Metro Operations Optimization
๐5
Essential Topics to Master Data Science Interviews: ๐
SQL:
1. Foundations
- Craft SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Embrace Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Navigate through simple databases and tables
2. Intermediate SQL
- Utilize Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Embrace Subqueries and nested queries
- Master Common Table Expressions (WITH clause)
- Implement CASE statements for logical queries
3. Advanced SQL
- Explore Advanced JOIN techniques (self-join, non-equi join)
- Dive into Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- Optimize queries with indexing
- Execute Data manipulation (INSERT, UPDATE, DELETE)
Python:
1. Python Basics
- Grasp Syntax, variables, and data types
- Command Control structures (if-else, for and while loops)
- Understand Basic data structures (lists, dictionaries, sets, tuples)
- Master Functions, lambda functions, and error handling (try-except)
- Explore Modules and packages
2. Pandas & Numpy
- Create and manipulate DataFrames and Series
- Perfect Indexing, selecting, and filtering data
- Handle missing data (fillna, dropna)
- Aggregate data with groupby, summarizing data
- Merge, join, and concatenate datasets
3. Data Visualization with Python
- Plot with Matplotlib (line plots, bar plots, histograms)
- Visualize with Seaborn (scatter plots, box plots, pair plots)
- Customize plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)
Excel:
1. Excel Essentials
- Conduct Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Dive into charts and basic data visualization
- Sort and filter data, use Conditional formatting
2. Intermediate Excel
- Master Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- Leverage PivotTables and PivotCharts for summarizing data
- Utilize data validation tools
- Employ What-if analysis tools (Data Tables, Goal Seek)
3. Advanced Excel
- Harness Array formulas and advanced functions
- Dive into Data Model & Power Pivot
- Explore Advanced Filter, Slicers, and Timelines in Pivot Tables
- Create dynamic charts and interactive dashboards
Power BI:
1. Data Modeling in Power BI
- Import data from various sources
- Establish and manage relationships between datasets
- Grasp Data modeling basics (star schema, snowflake schema)
2. Data Transformation in Power BI
- Use Power Query for data cleaning and transformation
- Apply advanced data shaping techniques
- Create Calculated columns and measures using DAX
3. Data Visualization and Reporting in Power BI
- Craft interactive reports and dashboards
- Utilize Visualizations (bar, line, pie charts, maps)
- Publish and share reports, schedule data refreshes
Statistics Fundamentals:
- Mean, Median, Mode
- Standard Deviation, Variance
- Probability Distributions, Hypothesis Testing
- P-values, Confidence Intervals
- Correlation, Simple Linear Regression
- Normal Distribution, Binomial Distribution, Poisson Distribution.
Show some โค๏ธ if you're ready to elevate your data science journey! ๐
ENJOY LEARNING ๐๐
SQL:
1. Foundations
- Craft SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Embrace Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Navigate through simple databases and tables
2. Intermediate SQL
- Utilize Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Embrace Subqueries and nested queries
- Master Common Table Expressions (WITH clause)
- Implement CASE statements for logical queries
3. Advanced SQL
- Explore Advanced JOIN techniques (self-join, non-equi join)
- Dive into Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- Optimize queries with indexing
- Execute Data manipulation (INSERT, UPDATE, DELETE)
Python:
1. Python Basics
- Grasp Syntax, variables, and data types
- Command Control structures (if-else, for and while loops)
- Understand Basic data structures (lists, dictionaries, sets, tuples)
- Master Functions, lambda functions, and error handling (try-except)
- Explore Modules and packages
2. Pandas & Numpy
- Create and manipulate DataFrames and Series
- Perfect Indexing, selecting, and filtering data
- Handle missing data (fillna, dropna)
- Aggregate data with groupby, summarizing data
- Merge, join, and concatenate datasets
3. Data Visualization with Python
- Plot with Matplotlib (line plots, bar plots, histograms)
- Visualize with Seaborn (scatter plots, box plots, pair plots)
- Customize plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)
Excel:
1. Excel Essentials
- Conduct Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Dive into charts and basic data visualization
- Sort and filter data, use Conditional formatting
2. Intermediate Excel
- Master Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- Leverage PivotTables and PivotCharts for summarizing data
- Utilize data validation tools
- Employ What-if analysis tools (Data Tables, Goal Seek)
3. Advanced Excel
- Harness Array formulas and advanced functions
- Dive into Data Model & Power Pivot
- Explore Advanced Filter, Slicers, and Timelines in Pivot Tables
- Create dynamic charts and interactive dashboards
Power BI:
1. Data Modeling in Power BI
- Import data from various sources
- Establish and manage relationships between datasets
- Grasp Data modeling basics (star schema, snowflake schema)
2. Data Transformation in Power BI
- Use Power Query for data cleaning and transformation
- Apply advanced data shaping techniques
- Create Calculated columns and measures using DAX
3. Data Visualization and Reporting in Power BI
- Craft interactive reports and dashboards
- Utilize Visualizations (bar, line, pie charts, maps)
- Publish and share reports, schedule data refreshes
Statistics Fundamentals:
- Mean, Median, Mode
- Standard Deviation, Variance
- Probability Distributions, Hypothesis Testing
- P-values, Confidence Intervals
- Correlation, Simple Linear Regression
- Normal Distribution, Binomial Distribution, Poisson Distribution.
Show some โค๏ธ if you're ready to elevate your data science journey! ๐
ENJOY LEARNING ๐๐
๐8โค2
Goldman Sachs senior data analyst interview asked questions
SQL
1 find avg of salaries department wise from table
2 Write a SQL query to see employee name and manager name using a self-join on 'employees' table with columns 'emp_id', 'name', and 'manager_id'.
3 newest joinee for every department (solved using lead lag)
POWER BI
1. What does Filter context in DAX mean?
2. Explain how to implement Row-Level Security (RLS) in Power BI.
3. Describe different types of filters in Power BI.
4. Explain the difference between 'ALL' and 'ALLSELECTED' in DAX.
5. How do you calculate the total sales for a specific product using DAX?
PYTHON
1. Create a dictionary, add elements to it, modify an element, and then print the dictionary in alphabetical order of keys.
2. Find unique values in a list of assorted numbers and print the count of how many times each value is repeated.
3. Find and print duplicate values in a list of assorted numbers, along with the number of times each value is repeated.
I have curated best 80+ top-notch Data Analytics Resources ๐๐
https://t.iss.one/DataSimplifier
Hope this helps you ๐
SQL
1 find avg of salaries department wise from table
2 Write a SQL query to see employee name and manager name using a self-join on 'employees' table with columns 'emp_id', 'name', and 'manager_id'.
3 newest joinee for every department (solved using lead lag)
POWER BI
1. What does Filter context in DAX mean?
2. Explain how to implement Row-Level Security (RLS) in Power BI.
3. Describe different types of filters in Power BI.
4. Explain the difference between 'ALL' and 'ALLSELECTED' in DAX.
5. How do you calculate the total sales for a specific product using DAX?
PYTHON
1. Create a dictionary, add elements to it, modify an element, and then print the dictionary in alphabetical order of keys.
2. Find unique values in a list of assorted numbers and print the count of how many times each value is repeated.
3. Find and print duplicate values in a list of assorted numbers, along with the number of times each value is repeated.
I have curated best 80+ top-notch Data Analytics Resources ๐๐
https://t.iss.one/DataSimplifier
Hope this helps you ๐
๐4โค1