Data Analysis Books | Python | SQL | Excel | Artificial Intelligence | Power BI | Tableau | AI Resources
48.5K subscribers
236 photos
1 video
36 files
396 links
Download Telegram
๐Ÿ‘‰โœ”๏ธHere are Data Analytics-related questions along with their answers:

1.Question: What is the purpose of exploratory data analysis (EDA)?

Answer: EDA is used to analyze and summarize data sets, often through visual methods, to understand patterns, relationships, and potential outliers.

2. Question: What is the difference between supervised and unsupervised learning?

Answer: Supervised learning involves training a model on a labeled dataset, while unsupervised learning deals with unlabeled data to discover patterns without explicit guidance.

3.Question: Explain the concept of normalization in the context of data preprocessing.

Answer: Normalization scales numeric features to a standard range, preventing certain features from dominating due to their larger scales.

4. Question: What is the purpose of a correlation coefficient in statistics?

Answer: A correlation coefficient measures the strength and direction of a linear relationship between two variables, ranging from -1 to 1.

5. Question: What is the role of a decision tree in machine learning?

Answer: A decision tree is a predictive model that maps features to outcomes by recursively splitting data based on feature conditions.

6. Question: Define precision and recall in the context of classification models.

Answer: Precision is the ratio of correctly predicted positive observations to the total predicted positives, while recall is the ratio of correctly predicted positive observations to all actual positives.

7. Question: What is the purpose of cross-validation in machine learning?

Answer: Cross-validation assesses a model's performance by dividing the dataset into multiple subsets, training the model on some, and testing it on others, helping to evaluate its generalization ability.

8. Question: Explain the concept of a data warehouse.

Answer: A data warehouse is a centralized repository that stores, integrates, and manages large volumes of data from different sources, providing a unified view for analysis and reporting.

9. Question: What is the difference between structured and unstructured data?

Answer: Structured data is organized and easily searchable (e.g., databases), while unstructured data lacks a predefined structure (e.g., text documents, images).

10. Question: What is clustering in machine learning?

Answer: Clustering is a technique that groups similar data points together based on certain features, helping to identify patterns or relationships within the data.
๐Ÿ‘2๐Ÿ‘1
Can you use Chat GPT as a data analyst?

The answer to this question is yes, but you need to be cautious about using Chat GPT on the job (and even while learning analytics) for the following reasons.

1. Chat GPT gets things wrong. A lot.

If you use Chat GPT to write code, you better know that coding language extremely well, because you gotta be able to fact check and alter the response you get from Chat GPT.

For this reason, I would recommend staying away from Chat GPT when youโ€™re learning SQL, Python, etc so you thoroughly learn the code without becoming dependent on AI.

2. You absolutely CANNOT paste company data into Chat GPT

As data analysts we work with highly confidential data that we must exercise great caution to protect.

For this reason, no matter how secure Chat GPT says it is, you must never paste company data into the application.

3. Some companies and bosses may not allow the use of Chat GPT

This is a reality in the world of tech and data since the avalanche of AI tools and features over the last couple years.

Iโ€™ve heard of some companies that block Chat GPT altogether, and some managers who advise against using it out of fears for security and other reasons.

Given all three of these reasons, feel free to play around with Chat GPT and AI and learn about them, but donโ€™t become overly dependent on these tools.
๐Ÿ”ฅ2
Creating a one-month data analytics roadmap requires a focused approach to cover essential concepts and skills. Here's a structured plan along with free resources:

๐Ÿ—“๏ธWeek 1: Foundation of Data Analytics

โ—พDay 1-2: Basics of Data Analytics
Resource: Khan Academy's Introduction to Statistics
Focus Areas: Understand descriptive statistics, types of data, and data distributions.

โ—พDay 3-4: Excel for Data Analysis
Resource: Microsoft Excel tutorials on YouTube or Excel Easy
Focus Areas: Learn essential Excel functions for data manipulation and analysis.

โ—พDay 5-7: Introduction to Python for Data Analysis
Resource: Codecademy's Python course or Google's Python Class
Focus Areas: Basic Python syntax, data structures, and libraries like NumPy and Pandas.

๐Ÿ—“๏ธWeek 2: Intermediate Data Analytics Skills

โ—พDay 8-10: Data Visualization
Resource: Data Visualization with Matplotlib and Seaborn tutorials
Focus Areas: Creating effective charts and graphs to communicate insights.

โ—พDay 11-12: Exploratory Data Analysis (EDA)
Resource: Towards Data Science articles on EDA techniques
Focus Areas: Techniques to summarize and explore datasets.

โ—พDay 13-14: SQL Fundamentals
Resource: Mode Analytics SQL Tutorial or SQLZoo
Focus Areas: Writing SQL queries for data manipulation.

๐Ÿ—“๏ธWeek 3: Advanced Techniques and Tools

โ—พDay 15-17: Machine Learning Basics
Resource: Andrew Ng's Machine Learning course on Coursera
Focus Areas: Understand key ML concepts like supervised learning and evaluation metrics.

โ—พDay 18-20: Data Cleaning and Preprocessing
Resource: Data Cleaning with Python by Packt
Focus Areas: Techniques to handle missing data, outliers, and normalization.

โ—พDay 21-22: Introduction to Big Data
Resource: Big Data University's courses on Hadoop and Spark
Focus Areas: Basics of distributed computing and big data technologies.


๐Ÿ—“๏ธWeek 4: Projects and Practice

โ—พDay 23-25: Real-World Data Analytics Projects
Resource: Kaggle datasets and competitions
Focus Areas: Apply learned skills to solve practical problems.

โ—พDay 26-28: Online Webinars and Community Engagement
Resource: Data Science meetups and webinars (Meetup.com, Eventbrite)
Focus Areas: Networking and learning from industry experts.


โ—พDay 29-30: Portfolio Building and Review
Activity: Create a GitHub repository showcasing projects and code
Focus Areas: Present projects and skills effectively for job applications.

๐Ÿ‘‰Additional Resources:
Books: "Python for Data Analysis" by Wes McKinney, "Data Science from Scratch" by Joel Grus.
Online Platforms: DataSimplifier, Kaggle, Towards Data Science

Tailor this roadmap to your learning pace and adjust the resources based on your preferences. Consistent practice and hands-on projects are crucial for mastering data analytics within a month. Good luck!
โค4๐Ÿ‘2๐Ÿ™1
Here is the list of few projects (found on kaggle). They cover Basics of Python, Advanced Statistics, Supervised Learning (Regression and Classification problems) & Data Science

Please also check the discussions and notebook submissions for different approaches and solution after you tried yourself.

1. Basic python and statistics

Pima Indians :- https://www.kaggle.com/uciml/pima-indians-diabetes-database
Cardio Goodness fit :- https://www.kaggle.com/saurav9786/cardiogoodfitness
Automobile :- https://www.kaggle.com/toramky/automobile-dataset

2. Advanced Statistics

Game of Thrones:-https://www.kaggle.com/mylesoneill/game-of-thrones
World University Ranking:-https://www.kaggle.com/mylesoneill/world-university-rankings
IMDB Movie Dataset:- https://www.kaggle.com/carolzhangdc/imdb-5000-movie-dataset

3. Supervised Learning

a) Regression Problems

How much did it rain :- https://www.kaggle.com/c/how-much-did-it-rain-ii/overview
Inventory Demand:- https://www.kaggle.com/c/grupo-bimbo-inventory-demand
Property Inspection predictiion:- https://www.kaggle.com/c/liberty-mutual-group-property-inspection-prediction
Restaurant Revenue prediction:- https://www.kaggle.com/c/restaurant-revenue-prediction/data
IMDB Box office Prediction:-https://www.kaggle.com/c/tmdb-box-office-prediction/overview

b) Classification problems

Employee Access challenge :- https://www.kaggle.com/c/amazon-employee-access-challenge/overview
Titanic :- https://www.kaggle.com/c/titanic
San Francisco crime:- https://www.kaggle.com/c/sf-crime
Customer satisfcation:-https://www.kaggle.com/c/santander-customer-satisfaction
Trip type classification:- https://www.kaggle.com/c/walmart-recruiting-trip-type-classification
Categorize cusine:- https://www.kaggle.com/c/whats-cooking

4. Some helpful Data science projects for beginners

https://www.kaggle.com/c/house-prices-advanced-regression-techniques

https://www.kaggle.com/c/digit-recognizer

https://www.kaggle.com/c/titanic

5. Intermediate Level Data science Projects

Black Friday Data : https://www.kaggle.com/sdolezel/black-friday

Human Activity Recognition Data : https://www.kaggle.com/uciml/human-activity-recognition-with-smartphones

Trip History Data : https://www.kaggle.com/pronto/cycle-share-dataset

Million Song Data : https://www.kaggle.com/c/msdchallenge

Census Income Data : https://www.kaggle.com/c/census-income/data

Movie Lens Data : https://www.kaggle.com/grouplens/movielens-20m-dataset

Twitter Classification Data : https://www.kaggle.com/c/twitter-sentiment-analysis2

Share with credits: https://t.iss.one/sqlproject

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘3
Data Analysis Roadmap.pdf
1001.3 KB
Data Analysis Roadmap!

Don't know where to start your Data Analyst journey? Worry not! Here is a 3 month roadmap that coverts everything a beginner needs, with no prior coding experience!


This roadmap covers:

- Technical Skills: Step-by-step guides for Excel, BI tools (Power BI/Tableau), SQL, Python & Pandas

- Soft Skills: Tips for networking, LinkedIn optimization, and business fundamentals

- Assignments and Projects: Real-world applications each week to build your portfolio

- Interview Prep: Practical resources and mock projects to get you job-ready

If youโ€™re ready to learn with structured weekly goals, free resources, and hands-on assignments, this roadmap is a great place to start!
๐Ÿ‘9
Creating a one-month data analytics roadmap requires a focused approach to cover essential concepts and skills. Here's a structured plan along with free resources:

๐Ÿ—“๏ธWeek 1: Foundation of Data Analytics

โ—พDay 1-2: Basics of Data Analytics
Resource: Khan Academy's Introduction to Statistics
Focus Areas: Understand descriptive statistics, types of data, and data distributions.

โ—พDay 3-4: Excel for Data Analysis
Resource: Microsoft Excel tutorials on YouTube or Excel Easy
Focus Areas: Learn essential Excel functions for data manipulation and analysis.

โ—พDay 5-7: Introduction to Python for Data Analysis
Resource: Codecademy's Python course or Google's Python Class
Focus Areas: Basic Python syntax, data structures, and libraries like NumPy and Pandas.

๐Ÿ—“๏ธWeek 2: Intermediate Data Analytics Skills

โ—พDay 8-10: Data Visualization
Resource: Data Visualization with Matplotlib and Seaborn tutorials
Focus Areas: Creating effective charts and graphs to communicate insights.

โ—พDay 11-12: Exploratory Data Analysis (EDA)
Resource: Towards Data Science articles on EDA techniques
Focus Areas: Techniques to summarize and explore datasets.

โ—พDay 13-14: SQL Fundamentals
Resource: Mode Analytics SQL Tutorial or SQLZoo
Focus Areas: Writing SQL queries for data manipulation.

๐Ÿ—“๏ธWeek 3: Advanced Techniques and Tools

โ—พDay 15-17: Machine Learning Basics
Resource: Andrew Ng's Machine Learning course on Coursera
Focus Areas: Understand key ML concepts like supervised learning and evaluation metrics.

โ—พDay 18-20: Data Cleaning and Preprocessing
Resource: Data Cleaning with Python by Packt
Focus Areas: Techniques to handle missing data, outliers, and normalization.

โ—พDay 21-22: Introduction to Big Data
Resource: Big Data University's courses on Hadoop and Spark
Focus Areas: Basics of distributed computing and big data technologies.


๐Ÿ—“๏ธWeek 4: Projects and Practice

โ—พDay 23-25: Real-World Data Analytics Projects
Resource: Kaggle datasets and competitions
Focus Areas: Apply learned skills to solve practical problems.

โ—พDay 26-28: Online Webinars and Community Engagement
Resource: Data Science meetups and webinars (Meetup.com, Eventbrite)
Focus Areas: Networking and learning from industry experts.


โ—พDay 29-30: Portfolio Building and Review
Activity: Create a GitHub repository showcasing projects and code
Focus Areas: Present projects and skills effectively for job applications.

๐Ÿ‘‰Additional Resources:
Books: "Python for Data Analysis" by Wes McKinney, "Data Science from Scratch" by Joel Grus.
Online Platforms: DataSimplifier, Kaggle, Towards Data Science

Data Science Course

Google Cloud Generative AI Path

Unlock the power of Generative AI Models

Machine Learning with Python Free Course

Machine Learning Free Book

Deep Learning Nanodegree Program with Real-world Projects

AI, Machine Learning and Deep Learning

Join @free4unow_backup for more free courses

ENJOY LEARNING๐Ÿ‘๐Ÿ‘
โค2๐Ÿ‘2
8 must-know Data Analytics Terms.
๐Ÿ”ฅ7๐Ÿ‘2โค1
๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—ฅ๐—ผ๐—ฎ๐—ฑ๐—บ๐—ฎ๐—ฝ

๐Ÿญ. ๐—ฃ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฎ๐—บ๐—บ๐—ถ๐—ป๐—ด ๐—Ÿ๐—ฎ๐—ป๐—ด๐˜‚๐—ฎ๐—ด๐—ฒ๐˜€: Master Python, SQL, and R for data manipulation and analysis.

๐Ÿฎ. ๐——๐—ฎ๐˜๐—ฎ ๐— ๐—ฎ๐—ป๐—ถ๐—ฝ๐˜‚๐—น๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ฎ๐—ป๐—ฑ ๐—ฃ๐—ฟ๐—ผ๐—ฐ๐—ฒ๐˜€๐˜€๐—ถ๐—ป๐—ด: Use Excel, Pandas, and ETL tools like Alteryx and Talend for data processing.

๐Ÿฏ. ๐——๐—ฎ๐˜๐—ฎ ๐—ฉ๐—ถ๐˜€๐˜‚๐—ฎ๐—น๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป: Learn Tableau, Power BI, and Matplotlib/Seaborn for creating insightful visualizations.

๐Ÿฐ. ๐—ฆ๐˜๐—ฎ๐˜๐—ถ๐˜€๐˜๐—ถ๐—ฐ๐˜€ ๐—ฎ๐—ป๐—ฑ ๐— ๐—ฎ๐˜๐—ต๐—ฒ๐—บ๐—ฎ๐˜๐—ถ๐—ฐ๐˜€: Understand Descriptive and Inferential Statistics, Probability, Regression, and Time Series Analysis.

๐Ÿฑ. ๐— ๐—ฎ๐—ฐ๐—ต๐—ถ๐—ป๐—ฒ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด: Get proficient in Supervised and Unsupervised Learning, along with Time Series Forecasting.

๐Ÿฒ. ๐—•๐—ถ๐—ด ๐——๐—ฎ๐˜๐—ฎ ๐—ง๐—ผ๐—ผ๐—น๐˜€: Utilize Google BigQuery, AWS Redshift, and NoSQL databases like MongoDB for large-scale data management.

๐Ÿณ. ๐— ๐—ผ๐—ป๐—ถ๐˜๐—ผ๐—ฟ๐—ถ๐—ป๐—ด ๐—ฎ๐—ป๐—ฑ ๐—ฅ๐—ฒ๐—ฝ๐—ผ๐—ฟ๐˜๐—ถ๐—ป๐—ด: Implement Data Quality Monitoring (Great Expectations) and Performance Tracking (Prometheus, Grafana).

๐Ÿด. ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—ง๐—ผ๐—ผ๐—น๐˜€: Work with Data Orchestration tools (Airflow, Prefect) and visualization tools like D3.js and Plotly.

๐Ÿต. ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ ๐— ๐—ฎ๐—ป๐—ฎ๐—ด๐—ฒ๐—ฟ: Manage resources using Jupyter Notebooks and Power BI.

๐Ÿญ๐Ÿฌ. ๐——๐—ฎ๐˜๐—ฎ ๐—š๐—ผ๐˜ƒ๐—ฒ๐—ฟ๐—ป๐—ฎ๐—ป๐—ฐ๐—ฒ ๐—ฎ๐—ป๐—ฑ ๐—˜๐˜๐—ต๐—ถ๐—ฐ๐˜€: Ensure compliance with GDPR, Data Privacy, and Data Quality standards.

๐Ÿญ๐Ÿญ. ๐—–๐—น๐—ผ๐˜‚๐—ฑ ๐—–๐—ผ๐—บ๐—ฝ๐˜‚๐˜๐—ถ๐—ป๐—ด: Leverage AWS, Google Cloud, and Azure for scalable data solutions.

๐Ÿญ๐Ÿฎ. ๐——๐—ฎ๐˜๐—ฎ ๐—ช๐—ฟ๐—ฎ๐—ป๐—ด๐—น๐—ถ๐—ป๐—ด ๐—ฎ๐—ป๐—ฑ ๐—–๐—น๐—ฒ๐—ฎ๐—ป๐—ถ๐—ป๐—ด: Master data cleaning (OpenRefine, Trifacta) and transformation techniques.

I have curated Data Analytics Resources ๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

Hope this helps you ๐Ÿ˜Š
โค5๐Ÿ‘1
Data analysis is a gateway to becoming a:

- Data Scientist
- Business Analyst
- Data Engineer
- BI Engineer
- Analytics Engineer

And many other roles.

Learning the skills doesn't close doors, if anything, it opens many more.
๐Ÿ”ฅ1
Don't Limit Yourself to Just One Title, "๐ƒ๐š๐ญ๐š ๐€๐ง๐š๐ฅ๐ฒ๐ฌ๐ญ" in Your Job Search!


Don't get caught up in the confines of a single job title! There are countless roles out there that might align perfectly with your skills and interests. Here are a few alternative titles for data analyst roles to broaden your search horizons:


1. QI Analyst
2. Risk Analyst
3. Data Modeler
4. Research Analyst
5. Business Analyst
6. Reporting Analyst
7. Operations Analyst
8. Social Media Analyst
9. Statistical Analyst
10. Statistical Analyst
11. Product Data Analyst
12. Analytics Engineer
13. Supply Chain Analyst
14. Data Mining Engineer
15. Data Science Associate
16. Financial Data Analyst
17. Cybersecurity Analyst
18. Marketing Data Analyst
19. Quantitative Analyst
20. HR Analytics Specialist
21. Decision Support Analyst
22. Machine Learning Analyst
23. Fraud Detection Analyst
24. Healthcare Data Analyst
25. Data Insights Specialist
26. Data Visualization Specialist
27. Customer Insights Analyst
28. Business Intelligence Analyst
29. Predictive Analytics Analyst

Remember, the right opportunity might be hiding behind a different title than you expect. Keep an open mind and explore all avenues in your job search journey!

Also, there might be fewer applicants for these roles as many don't search for titles other than data Analyst or Business Analyst. Maybe you can get more calls or interviews this way.

You don't have to try all the titles, filter out based on your interests and skills!

After all, ๐‰๐จ๐› ๐ƒ๐ž๐ฌ๐œ๐ซ๐ข๐ฉ๐ญ๐ข๐จ๐ง ๐ฆ๐š๐ญ๐ญ๐ž๐ซ๐ฌ ๐ฆ๐จ๐ซ๐ž ๐ญ๐ก๐š๐ง ๐ญ๐ก๐ž ๐ญ๐ข๐ญ๐ฅ๐ž!! ๐Ÿ˜‰

I have curated best 80+ top-notch Data Analytics Resources
๐Ÿ‘‡๐Ÿ‘‡
https://t.iss.one/DataSimplifier

Hope this helps you ๐Ÿ˜Š
๐Ÿ‘11โค1๐Ÿ‘Œ1
The Real Truth About Junior Data Analytics Interviews DataAnalytics
(From someone who's interviewed 50+ analysts)

Let me save you hours of interview prep...

SQL Round

WHAT THEY SAY:
"Complex SQL knowledge"

WHAT THEY ACTUALLY TEST:

Can you clean messy data
Do you check for NULL values
How do you handle duplicates
Can you explain your logic
Do you verify results

REAL QUESTIONS:

"Find duplicate transactions"
"Calculate monthly sales"
"Show top customers"
That's it. Really. โคต๏ธ

Excel Interview

WHAT THEY SAY:
"Advanced Excel skills"

WHAT THEY ACTUALLY TEST:

VLOOKUP/XLOOKUP usage
Pivot Table comfort
Basic formulas
Data cleaning approach
Problem-solving process

Business Case

WHAT THEY SAY:
"Data analysis presentation"

WHAT THEY REALLY WANT:

Can you explain simply
Do you ask good questions
Can you structure analysis
Do you focus on impact
Are you confident with data โคต๏ธ

Common Scenarios

The "Messy Data" Test
They give you:

Inconsistent formats
Missing values
Duplicate records

They watch:

How you spot issues
What questions you ask
Your cleaning approach

The "Explain It" Challenge

They ask:
"Walk me through your analysis"

They assess:

Communication clarity
Technical understanding
Business thinking
Confidence level โคต๏ธ

How to Actually Prepare

Practice Basics:

Simple SQL queries
Excel fundamentals
Clear explanation

Business Understanding:

Read company metrics
Understand industry
Know basic KPIs
Prepare good questions

Real Scenarios to Practice:

Monthly sales analysis
Customer segmentation
Product performance
Marketing campaign results

Reality Check:

They care more about:

How you think
How you communicate
How you solve problems

Than:
Perfect technical knowledge
Complex code
Advanced statistics

I have curated best 80+ top-notch Data Analytics Resources
๐Ÿ‘‡๐Ÿ‘‡
https://t.iss.one/DataSimplifier

Like this post for more content like this ๐Ÿ‘โ™ฅ๏ธ
๐Ÿ‘9โค3