Data Analysis Books | Python | SQL | Excel | Artificial Intelligence | Power BI | Tableau | AI Resources
48.6K subscribers
235 photos
1 video
37 files
395 links
Download Telegram
Complete roadmap to learn Python for data analysis

Step 1: Fundamentals of Python

1. Basics of Python Programming
- Introduction to Python
- Data types (integers, floats, strings, booleans)
- Variables and constants
- Basic operators (arithmetic, comparison, logical)

2. Control Structures
- Conditional statements (if, elif, else)
- Loops (for, while)
- List comprehensions

3. Functions and Modules
- Defining functions
- Function arguments and return values
- Importing modules
- Built-in functions vs. user-defined functions

4. Data Structures
- Lists, tuples, sets, dictionaries
- Manipulating data structures (add, remove, update elements)

Step 2: Advanced Python
1. File Handling
- Reading from and writing to files
- Working with different file formats (txt, csv, json)

2. Error Handling
- Try, except blocks
- Handling exceptions and errors gracefully

3. Object-Oriented Programming (OOP)
- Classes and objects
- Inheritance and polymorphism
- Encapsulation

Step 3: Libraries for Data Analysis
1. NumPy
- Understanding arrays and array operations
- Indexing, slicing, and iterating
- Mathematical functions and statistical operations

2. Pandas
- Series and DataFrames
- Reading and writing data (csv, excel, sql, json)
- Data cleaning and preparation
- Merging, joining, and concatenating data
- Grouping and aggregating data

3. Matplotlib and Seaborn
- Data visualization with Matplotlib
- Plotting different types of graphs (line, bar, scatter, histogram)
- Customizing plots
- Advanced visualizations with Seaborn

Step 4: Data Manipulation and Analysis
1. Data Wrangling
- Handling missing values
- Data transformation
- Feature engineering

2. Exploratory Data Analysis (EDA)
- Descriptive statistics
- Data visualization techniques
- Identifying patterns and outliers

3. Statistical Analysis
- Hypothesis testing
- Correlation and regression analysis
- Probability distributions

Step 5: Advanced Topics
1. Time Series Analysis
- Working with datetime objects
- Time series decomposition
- Forecasting models

2. Machine Learning Basics
- Introduction to machine learning
- Supervised vs. unsupervised learning
- Using Scikit-Learn for machine learning
- Building and evaluating models

3. Big Data and Cloud Computing
- Introduction to big data frameworks (e.g., Hadoop, Spark)
- Using cloud services for data analysis (e.g., AWS, Google Cloud)

Step 6: Practical Projects
1. Hands-on Projects
- Analyzing datasets from Kaggle
- Building interactive dashboards with Plotly or Dash
- Developing end-to-end data analysis projects

2. Collaborative Projects
- Participating in data science competitions
- Contributing to open-source projects

šŸ‘Øā€šŸ’» FREE Resources to Learn & Practice Python 

1. https://www.freecodecamp.org/learn/data-analysis-with-python/#data-analysis-with-python-course
2. https://www.hackerrank.com/domains/python
3. https://www.hackerearth.com/practice/python/getting-started/numbers/practice-problems/
4. https://t.iss.one/PythonInterviews
5. https://www.w3schools.com/python/python_exercises.asp
6. https://t.iss.one/pythonfreebootcamp/134
7. https://t.iss.one/pythonanalyst
8. https://pythonbasics.org/exercises/
9. https://t.iss.one/pythondevelopersindia/300
10. https://www.geeksforgeeks.org/python-programming-language/learn-python-tutorial
11. https://t.iss.one/pythonspecialist/33

Join @free4unow_backup for more free resources

ENJOY LEARNING šŸ‘šŸ‘
šŸ‘6
When you join a company and their database is an Excel workbook šŸ˜‚
šŸ‘2
I’m a data analyst.

I clean and prepare data daily for my job.

This is how I would learn data cleaning for 2025:
āœ…Learn how to handle missing values
āœ…Learn data normalization and standardization
āœ…Learn to remove duplicates
āœ…Learn how to handle outliers
āœ…Learn how to merge and join datasets
āœ…Learn to identify and correct data inconsistencies

Data cleaning is an essential step to make your analysis meaningful.
šŸ‘7ā¤1šŸ”„1
Skills a data analyst needs:

1. Technical skills
šŸ“ SQL
šŸ“ Excel
šŸ“ Data viz (Power BI/Tableau)

2. Soft skills
šŸ“ Problem solving
šŸ“ Communication
šŸ“ Thinking (critical + analytical)
ā¤6šŸ‘4
Anyone with an Internet connection can learn š——š—®š˜š—® š—”š—»š—®š—¹š˜†š˜€š—¶š˜€ š—³š—¼š—æ š—³š—æš—²š—²:

No more excuses now.

SQL - https://lnkd.in/gQkjdAWP
Python - https://lnkd.in/gQk8siKn
Excel - https://lnkd.in/d-txjPJn
Power BI - https://lnkd.in/gs6RgH2m
Tableau - https://lnkd.in/dDFdyS8y
Data Visualization - https://lnkd.in/dcHqhgn4
Data Cleaning - https://lnkd.in/dCXspR4p
Google Sheets - https://lnkd.in/d7eDi8pn
Statistics - https://lnkd.in/dgaw6KMW
Projects - https://lnkd.in/g2Fjzbma
Portfolio - https://t.iss.one/DataPortfolio

If you've read so far, do LIKE and share this channel with your friends & loved ones ā™„ļø

Hope it helps :)
ā¤10šŸ‘4
āŒØļø MongoDB Cheat Sheet

MongoDB is a flexible, document-orientated, NoSQL database program that can scale to any enterprise volume without compromising search performance.


This Post includes a MongoDB cheat sheet to make it easy for our followers to work with MongoDB.

Working with databases
Working with rows
Working with Documents
Querying data from documents
Modifying data in documents
Searching
šŸ‘4ā¤2