โค6๐1๐ฅ1
There has never been a better time to become a data analyst.
Tackle the tools:
- Excel
- SQL
- PowerBI/Tableau
- Python/R
Sharpen these soft skills:
- Communication
- Storytelling
- Critical thinking
- Business acumen
And let your journey begin.
Tackle the tools:
- Excel
- SQL
- PowerBI/Tableau
- Python/R
Sharpen these soft skills:
- Communication
- Storytelling
- Critical thinking
- Business acumen
And let your journey begin.
๐11โค1
Essential Power BI Interview Resources ๐๐
https://t.iss.one/PowerBI_analyst/498
https://t.iss.one/PowerBI_analyst/498
๐1
How to do confidence as a Data Analyst
Youโre unqualified because you havenโt applied your learning
2025 OUTs:
โข less tutorials
โข less boot camps
โข less certification
2025 INs:
โข Build SQL projects
โข Build Excel reports
โข Build PowerBi dashboards
Apply your learning by building to gain confidence.
#dataanalytics
Youโre unqualified because you havenโt applied your learning
2025 OUTs:
โข less tutorials
โข less boot camps
โข less certification
2025 INs:
โข Build SQL projects
โข Build Excel reports
โข Build PowerBi dashboards
Apply your learning by building to gain confidence.
#dataanalytics
๐16โค1
Complete roadmap to learn Python for data analysis
Step 1: Fundamentals of Python
1. Basics of Python Programming
- Introduction to Python
- Data types (integers, floats, strings, booleans)
- Variables and constants
- Basic operators (arithmetic, comparison, logical)
2. Control Structures
- Conditional statements (if, elif, else)
- Loops (for, while)
- List comprehensions
3. Functions and Modules
- Defining functions
- Function arguments and return values
- Importing modules
- Built-in functions vs. user-defined functions
4. Data Structures
- Lists, tuples, sets, dictionaries
- Manipulating data structures (add, remove, update elements)
Step 2: Advanced Python
1. File Handling
- Reading from and writing to files
- Working with different file formats (txt, csv, json)
2. Error Handling
- Try, except blocks
- Handling exceptions and errors gracefully
3. Object-Oriented Programming (OOP)
- Classes and objects
- Inheritance and polymorphism
- Encapsulation
Step 3: Libraries for Data Analysis
1. NumPy
- Understanding arrays and array operations
- Indexing, slicing, and iterating
- Mathematical functions and statistical operations
2. Pandas
- Series and DataFrames
- Reading and writing data (csv, excel, sql, json)
- Data cleaning and preparation
- Merging, joining, and concatenating data
- Grouping and aggregating data
3. Matplotlib and Seaborn
- Data visualization with Matplotlib
- Plotting different types of graphs (line, bar, scatter, histogram)
- Customizing plots
- Advanced visualizations with Seaborn
Step 4: Data Manipulation and Analysis
1. Data Wrangling
- Handling missing values
- Data transformation
- Feature engineering
2. Exploratory Data Analysis (EDA)
- Descriptive statistics
- Data visualization techniques
- Identifying patterns and outliers
3. Statistical Analysis
- Hypothesis testing
- Correlation and regression analysis
- Probability distributions
Step 5: Advanced Topics
1. Time Series Analysis
- Working with datetime objects
- Time series decomposition
- Forecasting models
2. Machine Learning Basics
- Introduction to machine learning
- Supervised vs. unsupervised learning
- Using Scikit-Learn for machine learning
- Building and evaluating models
3. Big Data and Cloud Computing
- Introduction to big data frameworks (e.g., Hadoop, Spark)
- Using cloud services for data analysis (e.g., AWS, Google Cloud)
Step 6: Practical Projects
1. Hands-on Projects
- Analyzing datasets from Kaggle
- Building interactive dashboards with Plotly or Dash
- Developing end-to-end data analysis projects
2. Collaborative Projects
- Participating in data science competitions
- Contributing to open-source projects
๐จโ๐ป FREE Resources to Learn & Practice Python
1. https://www.freecodecamp.org/learn/data-analysis-with-python/#data-analysis-with-python-course
2. https://www.hackerrank.com/domains/python
3. https://www.hackerearth.com/practice/python/getting-started/numbers/practice-problems/
4. https://t.iss.one/PythonInterviews
5. https://www.w3schools.com/python/python_exercises.asp
6. https://t.iss.one/pythonfreebootcamp/134
7. https://t.iss.one/pythonanalyst
8. https://pythonbasics.org/exercises/
9. https://t.iss.one/pythondevelopersindia/300
10. https://www.geeksforgeeks.org/python-programming-language/learn-python-tutorial
11. https://t.iss.one/pythonspecialist/33
Join @free4unow_backup for more free resources
ENJOY LEARNING ๐๐
Step 1: Fundamentals of Python
1. Basics of Python Programming
- Introduction to Python
- Data types (integers, floats, strings, booleans)
- Variables and constants
- Basic operators (arithmetic, comparison, logical)
2. Control Structures
- Conditional statements (if, elif, else)
- Loops (for, while)
- List comprehensions
3. Functions and Modules
- Defining functions
- Function arguments and return values
- Importing modules
- Built-in functions vs. user-defined functions
4. Data Structures
- Lists, tuples, sets, dictionaries
- Manipulating data structures (add, remove, update elements)
Step 2: Advanced Python
1. File Handling
- Reading from and writing to files
- Working with different file formats (txt, csv, json)
2. Error Handling
- Try, except blocks
- Handling exceptions and errors gracefully
3. Object-Oriented Programming (OOP)
- Classes and objects
- Inheritance and polymorphism
- Encapsulation
Step 3: Libraries for Data Analysis
1. NumPy
- Understanding arrays and array operations
- Indexing, slicing, and iterating
- Mathematical functions and statistical operations
2. Pandas
- Series and DataFrames
- Reading and writing data (csv, excel, sql, json)
- Data cleaning and preparation
- Merging, joining, and concatenating data
- Grouping and aggregating data
3. Matplotlib and Seaborn
- Data visualization with Matplotlib
- Plotting different types of graphs (line, bar, scatter, histogram)
- Customizing plots
- Advanced visualizations with Seaborn
Step 4: Data Manipulation and Analysis
1. Data Wrangling
- Handling missing values
- Data transformation
- Feature engineering
2. Exploratory Data Analysis (EDA)
- Descriptive statistics
- Data visualization techniques
- Identifying patterns and outliers
3. Statistical Analysis
- Hypothesis testing
- Correlation and regression analysis
- Probability distributions
Step 5: Advanced Topics
1. Time Series Analysis
- Working with datetime objects
- Time series decomposition
- Forecasting models
2. Machine Learning Basics
- Introduction to machine learning
- Supervised vs. unsupervised learning
- Using Scikit-Learn for machine learning
- Building and evaluating models
3. Big Data and Cloud Computing
- Introduction to big data frameworks (e.g., Hadoop, Spark)
- Using cloud services for data analysis (e.g., AWS, Google Cloud)
Step 6: Practical Projects
1. Hands-on Projects
- Analyzing datasets from Kaggle
- Building interactive dashboards with Plotly or Dash
- Developing end-to-end data analysis projects
2. Collaborative Projects
- Participating in data science competitions
- Contributing to open-source projects
๐จโ๐ป FREE Resources to Learn & Practice Python
1. https://www.freecodecamp.org/learn/data-analysis-with-python/#data-analysis-with-python-course
2. https://www.hackerrank.com/domains/python
3. https://www.hackerearth.com/practice/python/getting-started/numbers/practice-problems/
4. https://t.iss.one/PythonInterviews
5. https://www.w3schools.com/python/python_exercises.asp
6. https://t.iss.one/pythonfreebootcamp/134
7. https://t.iss.one/pythonanalyst
8. https://pythonbasics.org/exercises/
9. https://t.iss.one/pythondevelopersindia/300
10. https://www.geeksforgeeks.org/python-programming-language/learn-python-tutorial
11. https://t.iss.one/pythonspecialist/33
Join @free4unow_backup for more free resources
ENJOY LEARNING ๐๐
๐6
Python Pandas Beginner's Guide
๐4
Useful websites to practice and enhance your Data Analytics skills
๐๐
1. SQL
https://mode.com/sql-tutorial/introduction-to-sql
https://t.iss.one/sqlspecialist/232?single
2. Python
https://www.learnpython.org/
https://bit.ly/3T7y4ta
https://www.geeksforgeeks.org/python-programming-language/learn-python-tutorial
3. R
https://www.datacamp.com/courses/free-introduction-to-r
4. Data Structures
https://leetcode.com/study-plan/data-structure/
https://www.udacity.com/course/data-structures-and-algorithms-in-python--ud513
5. Data Visualization
https://www.freecodecamp.org/learn/data-visualization/
https://www.tableau.com/learn/training/20223
https://www.workout-wednesday.com/power-bi-challenges/
6. Excel
https://excel-practice-online.com/
https://www.w3schools.com/EXCEL/index.php
Join @free4unow_backup for more free courses
ENJOY LEARNING ๐๐
๐๐
1. SQL
https://mode.com/sql-tutorial/introduction-to-sql
https://t.iss.one/sqlspecialist/232?single
2. Python
https://www.learnpython.org/
https://bit.ly/3T7y4ta
https://www.geeksforgeeks.org/python-programming-language/learn-python-tutorial
3. R
https://www.datacamp.com/courses/free-introduction-to-r
4. Data Structures
https://leetcode.com/study-plan/data-structure/
https://www.udacity.com/course/data-structures-and-algorithms-in-python--ud513
5. Data Visualization
https://www.freecodecamp.org/learn/data-visualization/
https://www.tableau.com/learn/training/20223
https://www.workout-wednesday.com/power-bi-challenges/
6. Excel
https://excel-practice-online.com/
https://www.w3schools.com/EXCEL/index.php
Join @free4unow_backup for more free courses
ENJOY LEARNING ๐๐
๐6โค2
Iโm a data analyst.
I clean and prepare data daily for my job.
This is how I would learn data cleaning for 2025:
โ Learn how to handle missing values
โ Learn data normalization and standardization
โ Learn to remove duplicates
โ Learn how to handle outliers
โ Learn how to merge and join datasets
โ Learn to identify and correct data inconsistencies
Data cleaning is an essential step to make your analysis meaningful.
I clean and prepare data daily for my job.
This is how I would learn data cleaning for 2025:
โ Learn how to handle missing values
โ Learn data normalization and standardization
โ Learn to remove duplicates
โ Learn how to handle outliers
โ Learn how to merge and join datasets
โ Learn to identify and correct data inconsistencies
Data cleaning is an essential step to make your analysis meaningful.
๐7โค1๐ฅ1
Skills a data analyst needs:
1. Technical skills
๐ SQL
๐ Excel
๐ Data viz (Power BI/Tableau)
2. Soft skills
๐ Problem solving
๐ Communication
๐ Thinking (critical + analytical)
1. Technical skills
๐ SQL
๐ Excel
๐ Data viz (Power BI/Tableau)
2. Soft skills
๐ Problem solving
๐ Communication
๐ Thinking (critical + analytical)
โค6๐4
Anyone with an Internet connection can learn ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ ๐ณ๐ผ๐ฟ ๐ณ๐ฟ๐ฒ๐ฒ:
No more excuses now.
SQL - https://lnkd.in/gQkjdAWP
Python - https://lnkd.in/gQk8siKn
Excel - https://lnkd.in/d-txjPJn
Power BI - https://lnkd.in/gs6RgH2m
Tableau - https://lnkd.in/dDFdyS8y
Data Visualization - https://lnkd.in/dcHqhgn4
Data Cleaning - https://lnkd.in/dCXspR4p
Google Sheets - https://lnkd.in/d7eDi8pn
Statistics - https://lnkd.in/dgaw6KMW
Projects - https://lnkd.in/g2Fjzbma
Portfolio - https://t.iss.one/DataPortfolio
If you've read so far, do LIKE and share this channel with your friends & loved ones โฅ๏ธ
Hope it helps :)
No more excuses now.
SQL - https://lnkd.in/gQkjdAWP
Python - https://lnkd.in/gQk8siKn
Excel - https://lnkd.in/d-txjPJn
Power BI - https://lnkd.in/gs6RgH2m
Tableau - https://lnkd.in/dDFdyS8y
Data Visualization - https://lnkd.in/dcHqhgn4
Data Cleaning - https://lnkd.in/dCXspR4p
Google Sheets - https://lnkd.in/d7eDi8pn
Statistics - https://lnkd.in/dgaw6KMW
Projects - https://lnkd.in/g2Fjzbma
Portfolio - https://t.iss.one/DataPortfolio
If you've read so far, do LIKE and share this channel with your friends & loved ones โฅ๏ธ
Hope it helps :)
โค10๐4