This Telegram channel is a true gem for anyone looking to build a career in data analytics 👇👇
https://t.iss.one/jobs_SQL
Generally, I don't go out of my way to appreciate other channels, but this one is really worth it. Whether you're hunting for data analyst jobs, or seeking interview tips, this channel has it all covered.
Hope it helps :)
https://t.iss.one/jobs_SQL
Generally, I don't go out of my way to appreciate other channels, but this one is really worth it. Whether you're hunting for data analyst jobs, or seeking interview tips, this channel has it all covered.
Hope it helps :)
Telegram
Data Analyst Jobs
🏆 Be the first one to know about the latest data analyst, data scientist, data engineer & business analyst job openings.
🏆 Learn everything about data analytics
Ads/ Promotions: @love_data
🏆 Learn everything about data analytics
Ads/ Promotions: @love_data
❤4👍2
🚀👉Data Analytics skills and projects to add in a resume to get shortlisted
1. Technical Skills:
Proficiency in data analysis tools (e.g., Python, R, SQL).
Data visualization skills using tools like Tableau or Power BI.
Experience with statistical analysis and modeling techniques.
2. Data Cleaning and Preprocessing:
Showcase skills in cleaning and preprocessing raw data for analysis.
Highlight expertise in handling missing data and outliers effectively.
3. Database Management:
Mention experience with databases (e.g., MySQL, PostgreSQL) for data retrieval and manipulation.
4. Machine Learning:
If applicable, include knowledge of machine learning algorithms and their application in data analytics projects.
5. Data Storytelling:
Emphasize your ability to communicate insights effectively through data storytelling.
6. Big Data Technologies:
If relevant, mention experience with big data technologies such as Hadoop or Spark.
7. Business Acumen:
Showcase an understanding of the business context and how your analytics work contributes to organizational goals.
8. Problem-Solving:
Highlight instances where you solved business problems through data-driven insights.
9. Collaboration and Communication:
Demonstrate your ability to work in a team and communicate complex findings to non-technical stakeholders.
10. Projects:
List specific data analytics projects you've worked on, detailing the problem, methodology, tools used, and the impact on decision-making.
11. Certifications:
Include relevant certifications such as those from platforms like Coursera, edX, or industry-recognized certifications in data analytics.
12. Continuous Learning:
Showcase any ongoing education, workshops, or courses to display your commitment to staying updated in the field.
💼Tailor your resume to the specific job description, emphasizing the skills and experiences that align with the requirements of the position you're applying for.
1. Technical Skills:
Proficiency in data analysis tools (e.g., Python, R, SQL).
Data visualization skills using tools like Tableau or Power BI.
Experience with statistical analysis and modeling techniques.
2. Data Cleaning and Preprocessing:
Showcase skills in cleaning and preprocessing raw data for analysis.
Highlight expertise in handling missing data and outliers effectively.
3. Database Management:
Mention experience with databases (e.g., MySQL, PostgreSQL) for data retrieval and manipulation.
4. Machine Learning:
If applicable, include knowledge of machine learning algorithms and their application in data analytics projects.
5. Data Storytelling:
Emphasize your ability to communicate insights effectively through data storytelling.
6. Big Data Technologies:
If relevant, mention experience with big data technologies such as Hadoop or Spark.
7. Business Acumen:
Showcase an understanding of the business context and how your analytics work contributes to organizational goals.
8. Problem-Solving:
Highlight instances where you solved business problems through data-driven insights.
9. Collaboration and Communication:
Demonstrate your ability to work in a team and communicate complex findings to non-technical stakeholders.
10. Projects:
List specific data analytics projects you've worked on, detailing the problem, methodology, tools used, and the impact on decision-making.
11. Certifications:
Include relevant certifications such as those from platforms like Coursera, edX, or industry-recognized certifications in data analytics.
12. Continuous Learning:
Showcase any ongoing education, workshops, or courses to display your commitment to staying updated in the field.
💼Tailor your resume to the specific job description, emphasizing the skills and experiences that align with the requirements of the position you're applying for.
👍10❤5
Complete roadmap to learn Python for data analysis
Step 1: Fundamentals of Python
1. Basics of Python Programming
- Introduction to Python
- Data types (integers, floats, strings, booleans)
- Variables and constants
- Basic operators (arithmetic, comparison, logical)
2. Control Structures
- Conditional statements (if, elif, else)
- Loops (for, while)
- List comprehensions
3. Functions and Modules
- Defining functions
- Function arguments and return values
- Importing modules
- Built-in functions vs. user-defined functions
4. Data Structures
- Lists, tuples, sets, dictionaries
- Manipulating data structures (add, remove, update elements)
Step 2: Advanced Python
1. File Handling
- Reading from and writing to files
- Working with different file formats (txt, csv, json)
2. Error Handling
- Try, except blocks
- Handling exceptions and errors gracefully
3. Object-Oriented Programming (OOP)
- Classes and objects
- Inheritance and polymorphism
- Encapsulation
Step 3: Libraries for Data Analysis
1. NumPy
- Understanding arrays and array operations
- Indexing, slicing, and iterating
- Mathematical functions and statistical operations
2. Pandas
- Series and DataFrames
- Reading and writing data (csv, excel, sql, json)
- Data cleaning and preparation
- Merging, joining, and concatenating data
- Grouping and aggregating data
3. Matplotlib and Seaborn
- Data visualization with Matplotlib
- Plotting different types of graphs (line, bar, scatter, histogram)
- Customizing plots
- Advanced visualizations with Seaborn
Step 4: Data Manipulation and Analysis
1. Data Wrangling
- Handling missing values
- Data transformation
- Feature engineering
2. Exploratory Data Analysis (EDA)
- Descriptive statistics
- Data visualization techniques
- Identifying patterns and outliers
3. Statistical Analysis
- Hypothesis testing
- Correlation and regression analysis
- Probability distributions
Step 5: Advanced Topics
1. Time Series Analysis
- Working with datetime objects
- Time series decomposition
- Forecasting models
2. Machine Learning Basics
- Introduction to machine learning
- Supervised vs. unsupervised learning
- Using Scikit-Learn for machine learning
- Building and evaluating models
3. Big Data and Cloud Computing
- Introduction to big data frameworks (e.g., Hadoop, Spark)
- Using cloud services for data analysis (e.g., AWS, Google Cloud)
Step 6: Practical Projects
1. Hands-on Projects
- Analyzing datasets from Kaggle
- Building interactive dashboards with Plotly or Dash
- Developing end-to-end data analysis projects
2. Collaborative Projects
- Participating in data science competitions
- Contributing to open-source projects
👨💻 FREE Resources to Learn & Practice Python
1. https://www.freecodecamp.org/learn/data-analysis-with-python/#data-analysis-with-python-course
2. https://www.hackerrank.com/domains/python
3. https://www.hackerearth.com/practice/python/getting-started/numbers/practice-problems/
4. https://t.iss.one/PythonInterviews
5. https://www.w3schools.com/python/python_exercises.asp
6. https://t.iss.one/pythonfreebootcamp/134
7. https://t.iss.one/pythonanalyst
8. https://pythonbasics.org/exercises/
9. https://t.iss.one/pythondevelopersindia/300
10. https://www.geeksforgeeks.org/python-programming-language/learn-python-tutorial
11. https://t.iss.one/pythonspecialist/33
Join @free4unow_backup for more free resources
ENJOY LEARNING 👍👍
Step 1: Fundamentals of Python
1. Basics of Python Programming
- Introduction to Python
- Data types (integers, floats, strings, booleans)
- Variables and constants
- Basic operators (arithmetic, comparison, logical)
2. Control Structures
- Conditional statements (if, elif, else)
- Loops (for, while)
- List comprehensions
3. Functions and Modules
- Defining functions
- Function arguments and return values
- Importing modules
- Built-in functions vs. user-defined functions
4. Data Structures
- Lists, tuples, sets, dictionaries
- Manipulating data structures (add, remove, update elements)
Step 2: Advanced Python
1. File Handling
- Reading from and writing to files
- Working with different file formats (txt, csv, json)
2. Error Handling
- Try, except blocks
- Handling exceptions and errors gracefully
3. Object-Oriented Programming (OOP)
- Classes and objects
- Inheritance and polymorphism
- Encapsulation
Step 3: Libraries for Data Analysis
1. NumPy
- Understanding arrays and array operations
- Indexing, slicing, and iterating
- Mathematical functions and statistical operations
2. Pandas
- Series and DataFrames
- Reading and writing data (csv, excel, sql, json)
- Data cleaning and preparation
- Merging, joining, and concatenating data
- Grouping and aggregating data
3. Matplotlib and Seaborn
- Data visualization with Matplotlib
- Plotting different types of graphs (line, bar, scatter, histogram)
- Customizing plots
- Advanced visualizations with Seaborn
Step 4: Data Manipulation and Analysis
1. Data Wrangling
- Handling missing values
- Data transformation
- Feature engineering
2. Exploratory Data Analysis (EDA)
- Descriptive statistics
- Data visualization techniques
- Identifying patterns and outliers
3. Statistical Analysis
- Hypothesis testing
- Correlation and regression analysis
- Probability distributions
Step 5: Advanced Topics
1. Time Series Analysis
- Working with datetime objects
- Time series decomposition
- Forecasting models
2. Machine Learning Basics
- Introduction to machine learning
- Supervised vs. unsupervised learning
- Using Scikit-Learn for machine learning
- Building and evaluating models
3. Big Data and Cloud Computing
- Introduction to big data frameworks (e.g., Hadoop, Spark)
- Using cloud services for data analysis (e.g., AWS, Google Cloud)
Step 6: Practical Projects
1. Hands-on Projects
- Analyzing datasets from Kaggle
- Building interactive dashboards with Plotly or Dash
- Developing end-to-end data analysis projects
2. Collaborative Projects
- Participating in data science competitions
- Contributing to open-source projects
👨💻 FREE Resources to Learn & Practice Python
1. https://www.freecodecamp.org/learn/data-analysis-with-python/#data-analysis-with-python-course
2. https://www.hackerrank.com/domains/python
3. https://www.hackerearth.com/practice/python/getting-started/numbers/practice-problems/
4. https://t.iss.one/PythonInterviews
5. https://www.w3schools.com/python/python_exercises.asp
6. https://t.iss.one/pythonfreebootcamp/134
7. https://t.iss.one/pythonanalyst
8. https://pythonbasics.org/exercises/
9. https://t.iss.one/pythondevelopersindia/300
10. https://www.geeksforgeeks.org/python-programming-language/learn-python-tutorial
11. https://t.iss.one/pythonspecialist/33
Join @free4unow_backup for more free resources
ENJOY LEARNING 👍👍
👍15❤5
SQL Interview Ques & ANS 💥
👍19❤4🔥2
Data Analyst Jobs.pdf
112.2 KB
🏆 Data Analyst Jobs ✅
👉🏻 DO REACT IF YOU WANT MORE CONTENT LIKE THIS FOR FREE 🆓
👉🏻 DO REACT IF YOU WANT MORE CONTENT LIKE THIS FOR FREE 🆓
👍35❤7🔥1
Excel Interview Q&A @excel_analyst.pdf
115.4 KB
🏆 Excel interview Questions ✅
👉🏻 DO REACT IF YOU WANT MORE CONTENT LIKE THIS FOR FREE 🆓
👉🏻 DO REACT IF YOU WANT MORE CONTENT LIKE THIS FOR FREE 🆓
👍20🔥5❤4🎄1
Python Top 10 Interview Questions for Freshers 👇👇
https://medium.com/@data_analyst/python-top-10-interview-questions-for-freshers-9937ed74c0a7
Join our channel for more resources like this: https://t.iss.one/learndataanalysis
https://medium.com/@data_analyst/python-top-10-interview-questions-for-freshers-9937ed74c0a7
Join our channel for more resources like this: https://t.iss.one/learndataanalysis
❤5👍2
Useful Websites.pdf_20231118_154343_0000.pdf
608.9 KB
Useful Websites for Jobs & Resume
👉🏻 LIKE IF YOU WANT MORE CONTENT LIKE THIS FOR FREE 🆓
👉🏻 LIKE IF YOU WANT MORE CONTENT LIKE THIS FOR FREE 🆓
❤13👍5
Don't waste your lot of time when learning data analysis.
Here's how you may start your Data analysis journey
1️⃣ - Avoid learning a programming language (e.g., SQL, R, or Python) for as long as possible.
This advice might seem strange coming from a former software engineer, so let me explain.
The vast majority of data analyses conducted each day worldwide are performed in the "solo analyst" scenario.
In this scenario, nobody cares about how the analysis was completed.
Only the results matter.
Also, the analysis methods (e.g., code) are rarely shared in this scenario.
Like for next steps
#dataanalysis
Here's how you may start your Data analysis journey
1️⃣ - Avoid learning a programming language (e.g., SQL, R, or Python) for as long as possible.
This advice might seem strange coming from a former software engineer, so let me explain.
The vast majority of data analyses conducted each day worldwide are performed in the "solo analyst" scenario.
In this scenario, nobody cares about how the analysis was completed.
Only the results matter.
Also, the analysis methods (e.g., code) are rarely shared in this scenario.
Like for next steps
#dataanalysis
👍68❤20🔥2😁1🤔1
2️⃣ Use Microsoft Excel for as long as possible.
Again, on the surface, strange advice from someone who loves SQL and Python.
When I first started learning data analysis, I ignored Microsoft Excel.
I was a coder, and I looked down on Excel.
I was 100% wrong.
Over the years, Excel has become an exceedingly powerful data analysis tool.
For many professionals, it can be all the analytical tooling they need.
For example, Excel is a wonderful tool for visually analyzing data (e.g., PivotCharts).
You can use Excel to conduct powerful Diagnostic Analytics.
The simple reality is that many professionals will never hit Excel's data limit - especially if they have a decent laptop.
#dataanalysis
Again, on the surface, strange advice from someone who loves SQL and Python.
When I first started learning data analysis, I ignored Microsoft Excel.
I was a coder, and I looked down on Excel.
I was 100% wrong.
Over the years, Excel has become an exceedingly powerful data analysis tool.
For many professionals, it can be all the analytical tooling they need.
For example, Excel is a wonderful tool for visually analyzing data (e.g., PivotCharts).
You can use Excel to conduct powerful Diagnostic Analytics.
The simple reality is that many professionals will never hit Excel's data limit - especially if they have a decent laptop.
#dataanalysis
Telegram
MS Excel for Data Analysis
✅ Learn Basic & Advaced Ms Excel concepts for data analysis
✅ Learn Tips & Tricks Used in Excel
✅ Become An Expert
✅ Use The Skills Learnt Here In Your Career
For promotions: @love_data
✅ Learn Tips & Tricks Used in Excel
✅ Become An Expert
✅ Use The Skills Learnt Here In Your Career
For promotions: @love_data
👍5❤4🔥2👏1