Data Analysis Books | Python | SQL | Excel | Artificial Intelligence | Power BI | Tableau | AI Resources
49.2K subscribers
237 photos
1 video
38 files
398 links
Download Telegram
๐Ÿ“Š Core Data Analyst Interview Topics You Should Know โœ…

1๏ธโƒฃ Excel/Spreadsheet Skills
โฆ VLOOKUP, INDEX-MATCH, XLOOKUP (newer Excel fave)
โฆ Pivot Tables for summarizing data
โฆ Conditional Formatting to highlight trends
โฆ Data Cleaning & Validation with formulas like IFERROR

2๏ธโƒฃ SQL & Databases
โฆ SELECT, JOINs (INNER, LEFT, RIGHT, FULL)
โฆ GROUP BY, HAVING, ORDER BY for aggregations
โฆ Subqueries & Window Functions (ROW_NUMBER, LAG)
โฆ CTEs for cleaner, reusable queries

3๏ธโƒฃ Data Visualization
โฆ Tools: Power BI, Tableau, Excel, Google Data Studio
โฆ Best practices: Choose charts wisely (bar for comparisons, line for trends)
โฆ Dashboards & Interactivity with slicers/drill-downs
โฆ Storytelling with Data to make insights pop

4๏ธโƒฃ Statistics & Probability
โฆ Mean, Median, Mode, Standard Deviation for summaries
โฆ Correlation vs. Causation (correlation doesn't imply cause!)
โฆ Hypothesis Testing (t-test, p-value for significance)
โฆ Confidence Intervals to gauge reliability

5๏ธโƒฃ Python for Data Analysis
โฆ Libraries: Pandas for dataframes, NumPy for arrays, Matplotlib/Seaborn for plots
โฆ Data wrangling & cleaning (handling nulls, merging)
โฆ Basic EDA: Describe stats, visualizations, correlations

6๏ธโƒฃ Business Understanding
โฆ KPI identification (e.g., conversion rate, churn)
โฆ Funnel analysis for drop-offs
โฆ A/B Testing basics to validate changes
โฆ Decision-making support with actionable recommendations

7๏ธโƒฃ Problem Solving & Case Studies
โฆ Product metrics (DAU/MAU, retention)
โฆ Customer segmentation (RFM analysis)
โฆ Market trend analysis with time-series

8๏ธโƒฃ ETL Concepts
โฆ Extract from sources, Transform (clean/aggregate), Load to warehouses
โฆ Data pipeline basics using tools like Airflow or dbt

9๏ธโƒฃ Data Cleaning Techniques
โฆ Handling missing values (impute or drop)
โฆ Duplicates, outliers detection/removal
โฆ Data formatting (standardize dates, text)

๐Ÿ”Ÿ Soft Skills & Communication
โฆ Explaining insights to non-technical stakeholders simply
โฆ Clear visualization storytelling (avoid clutter)
โฆ Collaborating with cross-functional teams for context

๐Ÿ’ฌ Tap โค๏ธ for more!
โค14
๐ŸŽฏ 2 Power-Packed Courses to Boost Your Tech Career! ๐Ÿ’ป๐Ÿš€

Whether you're preparing for placements or starting your coding journey โ€” weโ€™ve got you covered!

โœ… 1. DSA Self-Paced Course 
๐Ÿ“Œ Master Data Structures & Algorithms 
โ€“ Perfect for SDE interviews & competitive coding 
โ€“ Covers Arrays, Trees, Graphs, DP & more 
๐Ÿ”— Join now: https://gfgcdn.com/tu/W84/

โœ… 2. Python Beginner to Advanced 
๐Ÿ“Œ Learn Python from scratch to expert level 
โ€“ Covers basics, OOPs, file handling, projects & more 
๐Ÿ”— Start here: https://gfgcdn.com/tu/W8D/

๐ŸŽ Use Coupon: GFGWINTERARC for 25% OFF (Limited Time!)
โค3
๐ŸŽฏ 2 Power-Packed Courses to Boost Your Tech Career! ๐Ÿ’ป๐Ÿš€

Whether you're preparing for placements or starting your coding journey โ€” weโ€™ve got you covered!

โœ… 1. DSA Self-Paced Course
๐Ÿ“Œ Master Data Structures & Algorithms
โ€“ Perfect for SDE interviews & competitive coding
โ€“ Covers Arrays, Trees, Graphs, DP & more
๐Ÿ”— Join now: https://gfgcdn.com/tu/W84/

โœ… 2. Python Beginner to Advanced
๐Ÿ“Œ Learn Python from scratch to expert level
โ€“ Covers basics, OOPs, file handling, projects & more
๐Ÿ”— Start here: https://gfgcdn.com/tu/W8D/

๐ŸŽ Use Coupon: GFGWINTERARC for 25% OFF (Limited Time!)
โค5
Hey guys ๐Ÿ‘‹

I was working on something big from last few days.

Finally, I have curated best 80+ top-notch Data Analytics Resources ๐Ÿ‘‡๐Ÿ‘‡
https://topmate.io/analyst/861634

If you go on purchasing these books, it will cost you more than 15000 but I kept the minimal price for everyone's benefit.

I hope these resources will help you in data analytics journey.

I will add more resources here in the future without any additional cost.

All the best for your career โค๏ธ
โค3
Useful websites to practice and enhance your data analytics skills
๐Ÿ‘‡๐Ÿ‘‡

1. Python
https://learnpython.org

2. SQL
https://www.sql-practice.com/

3. Excel
https://excel-practice-online.com/

4. Power BI
https://www.workout-wednesday.com/power-bi-challenges/

5. Quiz and Interview Questions
https://t.iss.one/sqlspecialist

Haven't shared lot of resources to avoid too much distraction

Just focus on the basics, practice learnings and work on building projects to improve your skills. Thats the best way to learn in my opinion ๐Ÿ˜„

Join @free4unow_backup for more free courses

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค9
๐Ÿ“Š Data Analytics Basics Cheatsheet

1. What is Data Analytics?
Analyzing raw data to find patterns, trends, and insights to support decision-making.

2. Types of Data Analytics:
โฆ Descriptive: What happened?
โฆ Diagnostic: Why did it happen?
โฆ Predictive: What might happen next?
โฆ Prescriptive: What should be done?

3. Key Tools & Languages:
โฆ Excel โ€“ Quick analysis & charts
โฆ SQL โ€“ Query and manage databases
โฆ Python (Pandas, NumPy, Matplotlib)
โฆ Power BI / Tableau โ€“ Dashboards & visualization

4. Data Cleaning Basics:
โฆ Handle missing values
โฆ Remove duplicates
โฆ Convert data types
โฆ Standardize formats

5. Exploratory Data Analysis (EDA):
โฆ Summary stats (mean, median, mode)
โฆ Data distribution
โฆ Correlation matrix
โฆ Visual tools: bar charts, boxplots, scatter plots

6. Data Visualization:
โฆ Use charts to simplify insights
โฆ Choose chart types based on data (line for trends, bar for comparisons, pie for proportions)

7. SQL Essentials:
โฆ SELECT, WHERE, JOIN, GROUP BY, HAVING, ORDER BY
โฆ Aggregate functions: COUNT, SUM, AVG, MAX, MIN

8. Python for Analysis:
โฆ Pandas for dataframes
โฆ Matplotlib/Seaborn for plotting
โฆ Scikit-learn for basic ML models

*9. Metrics to Know:
โฆ Growth %, Conversion rate, Retention rate
โฆ KPIs specific to domain (finance, marketing, etc.)

*10. Real-World Use Cases:
โฆ Customer segmentation
โฆ Sales trend analysis
โฆ A/B testing
โฆ Forecasting demand

๐Ÿ’ฌ Tap โค๏ธ for more!
โค17
Sber presented Europeโ€™s largest open-source project at AI Journey as it opened access to its flagship models โ€” the GigaChat Ultra-Preview and Lightning, in addition to a new generation of the GigaAM-v3 open-source models for speech recognition and a full range of image and video generation models in the new Kandinsky 5.0 line, including the Video Pro, Video Lite and Image Lite.

The GigaChat Ultra-Preview, a new MoE model featuring 702 billion parameters, has been compiled specifically with the Russian language in mind and trained entirely from scratch. Read a detailed post from the team here.

For the first time in Russia, an MoE model of this scale has been trained entirely from scratch โ€” without relying on any foreign weights. Training from scratch, and on such a scale to boot, is a challenge that few teams in the world have taken on.

Our flagship Kandinsky Video Pro model has caught up with Veo 3 in terms of visual quality and surpassed Wan 2.2-A14B. Read a detailed post from the team here.

The code and weights for all models are now available to all users under MIT license, including commercial use.
โค4
Complete SQL road map
๐Ÿ‘‡๐Ÿ‘‡

1.Intro to SQL
โ€ข Definition
โ€ข Purpose
โ€ข Relational DBs
โ€ข DBMS

2.Basic SQL Syntax
โ€ข SELECT
โ€ข FROM
โ€ข WHERE
โ€ข ORDER BY
โ€ข GROUP BY

3. Data Types
โ€ข Integer
โ€ข Floating-Point
โ€ข Character
โ€ข Date
โ€ข VARCHAR
โ€ข TEXT
โ€ข BLOB
โ€ข BOOLEAN

4.Sub languages
โ€ข DML
โ€ข DDL
โ€ข DQL
โ€ข DCL
โ€ข TCL

5. Data Manipulation
โ€ข INSERT
โ€ข UPDATE
โ€ข DELETE

6. Data Definition
โ€ข CREATE
โ€ข ALTER
โ€ข DROP
โ€ข Indexes

7.Query Filtering and Sorting
โ€ข WHERE
โ€ข AND
โ€ข OR Conditions
โ€ข Ascending
โ€ข Descending

8. Data Aggregation
โ€ข SUM
โ€ข AVG
โ€ข COUNT
โ€ข MIN
โ€ข MAX

9.Joins and Relationships
โ€ข INNER JOIN
โ€ข LEFT JOIN
โ€ข RIGHT JOIN
โ€ข Self-Joins
โ€ข Cross Joins
โ€ข FULL OUTER JOIN

10.Subqueries
โ€ข Subqueries used in
โ€ข Filtering data
โ€ข Aggregating data
โ€ข Joining tables
โ€ข Correlated Subqueries

11.Views
โ€ข Creating
โ€ข Modifying
โ€ข Dropping Views

12.Transactions
โ€ข ACID Properties
โ€ข COMMIT
โ€ข ROLLBACK
โ€ข SAVEPOINT
โ€ข ROLLBACK TO SAVEPOINT

13.Stored Procedures
โ€ข CREATE PROCEDURE
โ€ข ALTER PROCEDURE
โ€ข DROP PROCEDURE
โ€ข EXECUTE PROCEDURE
โ€ข User-Defined Functions (UDFs)

14.Triggers
โ€ข Trigger Events
โ€ข Trigger Execution and Syntax

15. Security and Permissions
โ€ข CREATE USER
โ€ข GRANT
โ€ข REVOKE
โ€ข ALTER USER
โ€ข DROP USER

16.Optimizations
โ€ข Indexing Strategies
โ€ข Query Optimization

17.Normalization
โ€ข 1NF(Normal Form)
โ€ข 2NF
โ€ข 3NF
โ€ข BCNF

18.Backup and Recovery
โ€ข Database Backups
โ€ข Point-in-Time Recovery

19.NoSQL Databases
โ€ข MongoDB
โ€ข Cassandra etc...
โ€ข Key differences

20. Data Integrity
โ€ข Primary Key
โ€ข Foreign Key

21.Advanced SQL Queries
โ€ข Window Functions
โ€ข Common Table Expressions (CTEs)

22.Full-Text Search
โ€ข Full-Text Indexes
โ€ข Search Optimization

23. Data Import and Export
โ€ข Importing Data
โ€ข Exporting Data (CSV, JSON)
โ€ข Using SQL Dump Files

24.Database Design
โ€ข Entity-Relationship Diagrams
โ€ข Normalization Techniques

25.Advanced Indexing
โ€ข Composite Indexes
โ€ข Covering Indexes

26.Database Transactions
โ€ข Savepoints
โ€ข Nested Transactions
โ€ข Two-Phase Commit Protocol

27.Performance Tuning
โ€ข Query Profiling and Analysis
โ€ข Query Cache Optimization

------------------ END -------------------

Some good resources to learn SQL

1.Tutorial & Courses
โ€ข Learn SQL: https://bit.ly/3FxxKPz
โ€ข Udacity: imp.i115008.net/AoAg7K

2. YouTube Channel's
โ€ข FreeCodeCamp:rb.gy/pprz73
โ€ข Programming with Mosh: rb.gy/g62hpe

3. Books
โ€ข SQL in a Nutshell: https://t.iss.one/DataAnalystInterview/158

4. SQL Interview Questions
https://t.iss.one/sqlanalyst/72?single

Join @free4unow_backup for more free resourses

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
โค10
The Shift in Data Analyst Roles: What You Should Apply for in 2025

The traditional โ€œData Analystโ€ title is gradually declining in demand in 2025 not because data is any less important, but because companies are getting more specific in what theyโ€™re looking for.

Today, many roles that were once grouped under โ€œData Analystโ€ are now split into more domain-focused titles, depending on the team or function they support.

Here are some roles gaining traction:
* Business Analyst
* Product Analyst
* Growth Analyst
* Marketing Analyst
* Financial Analyst
* Operations Analyst
* Risk Analyst
* Fraud Analyst
* Healthcare Analyst
* Technical Analyst
* Business Intelligence Analyst
* Decision Support Analyst
* Power BI Developer
* Tableau Developer

Focus on the skillsets and business context these roles demand.

Whether you're starting out or transitioning, look beyond "Data Analyst" and align your profile with industry-specific roles. Itโ€™s not about the titleโ€”itโ€™s about the value you bring to a team.
โค5๐Ÿ‘1
๐Ÿ”ฅ ๐—ฆ๐˜๐—ผ๐—ฝ ๐—ช๐—ฎ๐˜๐—ฐ๐—ต๐—ถ๐—ป๐—ด ๐—ง๐˜‚๐˜๐—ผ๐—ฟ๐—ถ๐—ฎ๐—น๐˜€.

๐—ฆ๐˜๐—ฎ๐—ฟ๐˜ ๐—ฃ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐—ฐ๐—ถ๐—ป๐—ด ๐—Ÿ๐—ถ๐—ธ๐—ฒ ๐—ฎ ๐—ฅ๐—ฒ๐—ฎ๐—น ๐——๐—ฎ๐˜๐—ฎ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ.

If you want ๐—ท๐—ผ๐—ฏ-๐—ฟ๐—ฒ๐—ฎ๐—ฑ๐˜† ๐—ฆ๐—ค๐—Ÿ, ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป, ๐—ฃ๐˜†๐—ฆ๐—ฝ๐—ฎ๐—ฟ๐—ธ, ๐—”๐˜‡๐˜‚๐—ฟ๐—ฒ & ๐—ฆ๐—ป๐—ผ๐˜„๐—ณ๐—น๐—ฎ๐—ธ๐—ฒ skills,

Hereโ€™s where to practice and what exactly to practice because these are mainly expected in all the companies especially in EY, PwC, KPMG & Deloitte ๐Ÿ‘‡

1๏ธโƒฃ ๐—ฆ๐—ค๐—Ÿ โ€” ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐—ฎ๐—น & ๐—ฃ๐—ฟ๐—ผ๐—ฑ๐˜‚๐—ฐ๐˜๐—ถ๐—ผ๐—ป-๐—Ÿ๐—ฒ๐˜ƒ๐—ฒ๐—น

LeetCode (SQL): https://lnkd.in/gudFeUbZ
HackerRank (SQL): https://lnkd.in/g9hpE6vQ
SQLZoo: https://sqlzoo.net/
โ€ข JOINs (INNER, LEFT, RIGHT)
โ€ข GROUP BY & HAVING
โ€ข Window functions (ROW_NUMBER, RANK)
โ€ข CTEs (WITH clause)
โ€ข Query optimization logic

2๏ธโƒฃ ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป โ€” ๐——๐—ฎ๐˜๐—ฎ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด ๐—™๐—ผ๐—ฐ๐˜‚๐˜€

LeetCode (Python): https://lnkd.in/gaEvhsvi
HackerRank (Python): https://lnkd.in/gGHkAE47
Exercism (Python): https://lnkd.in/gAuvZmwZ
โ€ข Functions & modules
โ€ข File handling (CSV, JSON)
โ€ข Data structures (list, dict)
โ€ข Error handling & logging
โ€ข Clean, readable code

3๏ธโƒฃ ๐—ฃ๐˜†๐—ฆ๐—ฝ๐—ฎ๐—ฟ๐—ธ โ€” ๐—•๐—ถ๐—ด ๐——๐—ฎ๐˜๐—ฎ ๐—›๐—ฎ๐—ป๐—ฑ๐˜€-๐—ข๐—ป

Databricks Community: https://lnkd.in/gpDTBDpq
SparkByExamples: https://lnkd.in/gfjnQ7Ud
Kaggle Notebooks: https://lnkd.in/gm7YU7Fp
โ€ข DataFrames & transformations
โ€ข Joins & aggregations
โ€ข Partitioning & caching
โ€ข Handling large datasets
โ€ข Performance tuning basics

4๏ธโƒฃ ๐—”๐˜‡๐˜‚๐—ฟ๐—ฒ โ€” ๐—˜๐—ป๐—ฑ-๐˜๐—ผ-๐—˜๐—ป๐—ฑ ๐——๐—ฎ๐˜๐—ฎ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด

Azure Free Account: https://lnkd.in/gk_Dpb9v
Microsoft Learn: https://lnkd.in/gb8nTnBf
Azure Data Factory: https://lnkd.in/ggpsYk7X
โ€ข Data ingestion using ADF
โ€ข ADLS Gen2 storage layers
โ€ข Parameterized pipelines
โ€ข Incremental data loads
โ€ข Monitoring & debugging

5๏ธโƒฃ ๐—ฆ๐—ป๐—ผ๐˜„๐—ณ๐—น๐—ฎ๐—ธ๐—ฒ โ€” ๐—ฅ๐—ฒ๐—ฎ๐—น ๐——๐—ฎ๐˜๐—ฎ ๐—ช๐—ฎ๐—ฟ๐—ฒ๐—ต๐—ผ๐˜‚๐˜€๐—ถ๐—ป๐—ด

Snowflake Trial: https://lnkd.in/g2dHRA9f
Sample Data: https://lnkd.in/grsV2X47
Snowflake Learn: https://lnkd.in/gVpiNKHF

โ€ข Data Loading and Unloading
โ€ข Fact & dimension modeling
โ€ข ELT inside Snowflake
โ€ข Query Profile analysis
โ€ข Cost & performance tuning
โค2