Excel Formulas every data analyst should know
โค7
๐ Core Data Analyst Interview Topics You Should Know โ
1๏ธโฃ Excel/Spreadsheet Skills
โฆ VLOOKUP, INDEX-MATCH, XLOOKUP (newer Excel fave)
โฆ Pivot Tables for summarizing data
โฆ Conditional Formatting to highlight trends
โฆ Data Cleaning & Validation with formulas like IFERROR
2๏ธโฃ SQL & Databases
โฆ SELECT, JOINs (INNER, LEFT, RIGHT, FULL)
โฆ GROUP BY, HAVING, ORDER BY for aggregations
โฆ Subqueries & Window Functions (ROW_NUMBER, LAG)
โฆ CTEs for cleaner, reusable queries
3๏ธโฃ Data Visualization
โฆ Tools: Power BI, Tableau, Excel, Google Data Studio
โฆ Best practices: Choose charts wisely (bar for comparisons, line for trends)
โฆ Dashboards & Interactivity with slicers/drill-downs
โฆ Storytelling with Data to make insights pop
4๏ธโฃ Statistics & Probability
โฆ Mean, Median, Mode, Standard Deviation for summaries
โฆ Correlation vs. Causation (correlation doesn't imply cause!)
โฆ Hypothesis Testing (t-test, p-value for significance)
โฆ Confidence Intervals to gauge reliability
5๏ธโฃ Python for Data Analysis
โฆ Libraries: Pandas for dataframes, NumPy for arrays, Matplotlib/Seaborn for plots
โฆ Data wrangling & cleaning (handling nulls, merging)
โฆ Basic EDA: Describe stats, visualizations, correlations
6๏ธโฃ Business Understanding
โฆ KPI identification (e.g., conversion rate, churn)
โฆ Funnel analysis for drop-offs
โฆ A/B Testing basics to validate changes
โฆ Decision-making support with actionable recommendations
7๏ธโฃ Problem Solving & Case Studies
โฆ Product metrics (DAU/MAU, retention)
โฆ Customer segmentation (RFM analysis)
โฆ Market trend analysis with time-series
8๏ธโฃ ETL Concepts
โฆ Extract from sources, Transform (clean/aggregate), Load to warehouses
โฆ Data pipeline basics using tools like Airflow or dbt
9๏ธโฃ Data Cleaning Techniques
โฆ Handling missing values (impute or drop)
โฆ Duplicates, outliers detection/removal
โฆ Data formatting (standardize dates, text)
๐ Soft Skills & Communication
โฆ Explaining insights to non-technical stakeholders simply
โฆ Clear visualization storytelling (avoid clutter)
โฆ Collaborating with cross-functional teams for context
๐ฌ Tap โค๏ธ for more!
1๏ธโฃ Excel/Spreadsheet Skills
โฆ VLOOKUP, INDEX-MATCH, XLOOKUP (newer Excel fave)
โฆ Pivot Tables for summarizing data
โฆ Conditional Formatting to highlight trends
โฆ Data Cleaning & Validation with formulas like IFERROR
2๏ธโฃ SQL & Databases
โฆ SELECT, JOINs (INNER, LEFT, RIGHT, FULL)
โฆ GROUP BY, HAVING, ORDER BY for aggregations
โฆ Subqueries & Window Functions (ROW_NUMBER, LAG)
โฆ CTEs for cleaner, reusable queries
3๏ธโฃ Data Visualization
โฆ Tools: Power BI, Tableau, Excel, Google Data Studio
โฆ Best practices: Choose charts wisely (bar for comparisons, line for trends)
โฆ Dashboards & Interactivity with slicers/drill-downs
โฆ Storytelling with Data to make insights pop
4๏ธโฃ Statistics & Probability
โฆ Mean, Median, Mode, Standard Deviation for summaries
โฆ Correlation vs. Causation (correlation doesn't imply cause!)
โฆ Hypothesis Testing (t-test, p-value for significance)
โฆ Confidence Intervals to gauge reliability
5๏ธโฃ Python for Data Analysis
โฆ Libraries: Pandas for dataframes, NumPy for arrays, Matplotlib/Seaborn for plots
โฆ Data wrangling & cleaning (handling nulls, merging)
โฆ Basic EDA: Describe stats, visualizations, correlations
6๏ธโฃ Business Understanding
โฆ KPI identification (e.g., conversion rate, churn)
โฆ Funnel analysis for drop-offs
โฆ A/B Testing basics to validate changes
โฆ Decision-making support with actionable recommendations
7๏ธโฃ Problem Solving & Case Studies
โฆ Product metrics (DAU/MAU, retention)
โฆ Customer segmentation (RFM analysis)
โฆ Market trend analysis with time-series
8๏ธโฃ ETL Concepts
โฆ Extract from sources, Transform (clean/aggregate), Load to warehouses
โฆ Data pipeline basics using tools like Airflow or dbt
9๏ธโฃ Data Cleaning Techniques
โฆ Handling missing values (impute or drop)
โฆ Duplicates, outliers detection/removal
โฆ Data formatting (standardize dates, text)
๐ Soft Skills & Communication
โฆ Explaining insights to non-technical stakeholders simply
โฆ Clear visualization storytelling (avoid clutter)
โฆ Collaborating with cross-functional teams for context
๐ฌ Tap โค๏ธ for more!
โค14
๐ฏ 2 Power-Packed Courses to Boost Your Tech Career! ๐ป๐
Whether you're preparing for placements or starting your coding journey โ weโve got you covered!
โ 1. DSA Self-Paced Course
๐ Master Data Structures & Algorithms
โ Perfect for SDE interviews & competitive coding
โ Covers Arrays, Trees, Graphs, DP & more
๐ Join now: https://gfgcdn.com/tu/W84/
โ 2. Python Beginner to Advanced
๐ Learn Python from scratch to expert level
โ Covers basics, OOPs, file handling, projects & more
๐ Start here: https://gfgcdn.com/tu/W8D/
๐ Use Coupon:
Whether you're preparing for placements or starting your coding journey โ weโve got you covered!
โ 1. DSA Self-Paced Course
๐ Master Data Structures & Algorithms
โ Perfect for SDE interviews & competitive coding
โ Covers Arrays, Trees, Graphs, DP & more
๐ Join now: https://gfgcdn.com/tu/W84/
โ 2. Python Beginner to Advanced
๐ Learn Python from scratch to expert level
โ Covers basics, OOPs, file handling, projects & more
๐ Start here: https://gfgcdn.com/tu/W8D/
๐ Use Coupon:
GFGWINTERARC for 25% OFF (Limited Time!)โค3
๐ฏ 2 Power-Packed Courses to Boost Your Tech Career! ๐ป๐
Whether you're preparing for placements or starting your coding journey โ weโve got you covered!
โ 1. DSA Self-Paced Course
๐ Master Data Structures & Algorithms
โ Perfect for SDE interviews & competitive coding
โ Covers Arrays, Trees, Graphs, DP & more
๐ Join now: https://gfgcdn.com/tu/W84/
โ 2. Python Beginner to Advanced
๐ Learn Python from scratch to expert level
โ Covers basics, OOPs, file handling, projects & more
๐ Start here: https://gfgcdn.com/tu/W8D/
๐ Use Coupon:
Whether you're preparing for placements or starting your coding journey โ weโve got you covered!
โ 1. DSA Self-Paced Course
๐ Master Data Structures & Algorithms
โ Perfect for SDE interviews & competitive coding
โ Covers Arrays, Trees, Graphs, DP & more
๐ Join now: https://gfgcdn.com/tu/W84/
โ 2. Python Beginner to Advanced
๐ Learn Python from scratch to expert level
โ Covers basics, OOPs, file handling, projects & more
๐ Start here: https://gfgcdn.com/tu/W8D/
๐ Use Coupon:
GFGWINTERARC for 25% OFF (Limited Time!)โค5
Hey guys ๐
I was working on something big from last few days.
Finally, I have curated best 80+ top-notch Data Analytics Resources ๐๐
https://topmate.io/analyst/861634
If you go on purchasing these books, it will cost you more than 15000 but I kept the minimal price for everyone's benefit.
I hope these resources will help you in data analytics journey.
I will add more resources here in the future without any additional cost.
All the best for your career โค๏ธ
I was working on something big from last few days.
Finally, I have curated best 80+ top-notch Data Analytics Resources ๐๐
https://topmate.io/analyst/861634
If you go on purchasing these books, it will cost you more than 15000 but I kept the minimal price for everyone's benefit.
I hope these resources will help you in data analytics journey.
I will add more resources here in the future without any additional cost.
All the best for your career โค๏ธ
โค3
Useful websites to practice and enhance your data analytics skills
๐๐
1. Python
https://learnpython.org
2. SQL
https://www.sql-practice.com/
3. Excel
https://excel-practice-online.com/
4. Power BI
https://www.workout-wednesday.com/power-bi-challenges/
5. Quiz and Interview Questions
https://t.iss.one/sqlspecialist
Haven't shared lot of resources to avoid too much distraction
Just focus on the basics, practice learnings and work on building projects to improve your skills. Thats the best way to learn in my opinion ๐
Join @free4unow_backup for more free courses
ENJOY LEARNING ๐๐
๐๐
1. Python
https://learnpython.org
2. SQL
https://www.sql-practice.com/
3. Excel
https://excel-practice-online.com/
4. Power BI
https://www.workout-wednesday.com/power-bi-challenges/
5. Quiz and Interview Questions
https://t.iss.one/sqlspecialist
Haven't shared lot of resources to avoid too much distraction
Just focus on the basics, practice learnings and work on building projects to improve your skills. Thats the best way to learn in my opinion ๐
Join @free4unow_backup for more free courses
ENJOY LEARNING ๐๐
โค9
PowerBI Interview Questions ๐๐ฅ
๐ Data Analytics Basics Cheatsheet
1. What is Data Analytics?
Analyzing raw data to find patterns, trends, and insights to support decision-making.
2. Types of Data Analytics:
โฆ Descriptive: What happened?
โฆ Diagnostic: Why did it happen?
โฆ Predictive: What might happen next?
โฆ Prescriptive: What should be done?
3. Key Tools & Languages:
โฆ Excel โ Quick analysis & charts
โฆ SQL โ Query and manage databases
โฆ Python (Pandas, NumPy, Matplotlib)
โฆ Power BI / Tableau โ Dashboards & visualization
4. Data Cleaning Basics:
โฆ Handle missing values
โฆ Remove duplicates
โฆ Convert data types
โฆ Standardize formats
5. Exploratory Data Analysis (EDA):
โฆ Summary stats (mean, median, mode)
โฆ Data distribution
โฆ Correlation matrix
โฆ Visual tools: bar charts, boxplots, scatter plots
6. Data Visualization:
โฆ Use charts to simplify insights
โฆ Choose chart types based on data (line for trends, bar for comparisons, pie for proportions)
7. SQL Essentials:
โฆ SELECT, WHERE, JOIN, GROUP BY, HAVING, ORDER BY
โฆ Aggregate functions: COUNT, SUM, AVG, MAX, MIN
8. Python for Analysis:
โฆ Pandas for dataframes
โฆ Matplotlib/Seaborn for plotting
โฆ Scikit-learn for basic ML models
*9. Metrics to Know:
โฆ Growth %, Conversion rate, Retention rate
โฆ KPIs specific to domain (finance, marketing, etc.)
*10. Real-World Use Cases:
โฆ Customer segmentation
โฆ Sales trend analysis
โฆ A/B testing
โฆ Forecasting demand
๐ฌ Tap โค๏ธ for more!
1. What is Data Analytics?
Analyzing raw data to find patterns, trends, and insights to support decision-making.
2. Types of Data Analytics:
โฆ Descriptive: What happened?
โฆ Diagnostic: Why did it happen?
โฆ Predictive: What might happen next?
โฆ Prescriptive: What should be done?
3. Key Tools & Languages:
โฆ Excel โ Quick analysis & charts
โฆ SQL โ Query and manage databases
โฆ Python (Pandas, NumPy, Matplotlib)
โฆ Power BI / Tableau โ Dashboards & visualization
4. Data Cleaning Basics:
โฆ Handle missing values
โฆ Remove duplicates
โฆ Convert data types
โฆ Standardize formats
5. Exploratory Data Analysis (EDA):
โฆ Summary stats (mean, median, mode)
โฆ Data distribution
โฆ Correlation matrix
โฆ Visual tools: bar charts, boxplots, scatter plots
6. Data Visualization:
โฆ Use charts to simplify insights
โฆ Choose chart types based on data (line for trends, bar for comparisons, pie for proportions)
7. SQL Essentials:
โฆ SELECT, WHERE, JOIN, GROUP BY, HAVING, ORDER BY
โฆ Aggregate functions: COUNT, SUM, AVG, MAX, MIN
8. Python for Analysis:
โฆ Pandas for dataframes
โฆ Matplotlib/Seaborn for plotting
โฆ Scikit-learn for basic ML models
*9. Metrics to Know:
โฆ Growth %, Conversion rate, Retention rate
โฆ KPIs specific to domain (finance, marketing, etc.)
*10. Real-World Use Cases:
โฆ Customer segmentation
โฆ Sales trend analysis
โฆ A/B testing
โฆ Forecasting demand
๐ฌ Tap โค๏ธ for more!
โค17
Sber presented Europeโs largest open-source project at AI Journey as it opened access to its flagship models โ the GigaChat Ultra-Preview and Lightning, in addition to a new generation of the GigaAM-v3 open-source models for speech recognition and a full range of image and video generation models in the new Kandinsky 5.0 line, including the Video Pro, Video Lite and Image Lite.
The GigaChat Ultra-Preview, a new MoE model featuring 702 billion parameters, has been compiled specifically with the Russian language in mind and trained entirely from scratch. Read a detailed post from the team here.
For the first time in Russia, an MoE model of this scale has been trained entirely from scratch โ without relying on any foreign weights. Training from scratch, and on such a scale to boot, is a challenge that few teams in the world have taken on.
Our flagship Kandinsky Video Pro model has caught up with Veo 3 in terms of visual quality and surpassed Wan 2.2-A14B. Read a detailed post from the team here.
The code and weights for all models are now available to all users under MIT license, including commercial use.
The GigaChat Ultra-Preview, a new MoE model featuring 702 billion parameters, has been compiled specifically with the Russian language in mind and trained entirely from scratch. Read a detailed post from the team here.
For the first time in Russia, an MoE model of this scale has been trained entirely from scratch โ without relying on any foreign weights. Training from scratch, and on such a scale to boot, is a challenge that few teams in the world have taken on.
Our flagship Kandinsky Video Pro model has caught up with Veo 3 in terms of visual quality and surpassed Wan 2.2-A14B. Read a detailed post from the team here.
The code and weights for all models are now available to all users under MIT license, including commercial use.
AI Journey
AI Journey Conference on 19-21 November 2025. Key speakers in the area of artificial intelligence technology
AI Journey Conference on 19-21 November 2025. Key speakers in the area of artificial intelligence technology.
โค4
Complete SQL road map
๐๐
1.Intro to SQL
โข Definition
โข Purpose
โข Relational DBs
โข DBMS
2.Basic SQL Syntax
โข SELECT
โข FROM
โข WHERE
โข ORDER BY
โข GROUP BY
3. Data Types
โข Integer
โข Floating-Point
โข Character
โข Date
โข VARCHAR
โข TEXT
โข BLOB
โข BOOLEAN
4.Sub languages
โข DML
โข DDL
โข DQL
โข DCL
โข TCL
5. Data Manipulation
โข INSERT
โข UPDATE
โข DELETE
6. Data Definition
โข CREATE
โข ALTER
โข DROP
โข Indexes
7.Query Filtering and Sorting
โข WHERE
โข AND
โข OR Conditions
โข Ascending
โข Descending
8. Data Aggregation
โข SUM
โข AVG
โข COUNT
โข MIN
โข MAX
9.Joins and Relationships
โข INNER JOIN
โข LEFT JOIN
โข RIGHT JOIN
โข Self-Joins
โข Cross Joins
โข FULL OUTER JOIN
10.Subqueries
โข Subqueries used in
โข Filtering data
โข Aggregating data
โข Joining tables
โข Correlated Subqueries
11.Views
โข Creating
โข Modifying
โข Dropping Views
12.Transactions
โข ACID Properties
โข COMMIT
โข ROLLBACK
โข SAVEPOINT
โข ROLLBACK TO SAVEPOINT
13.Stored Procedures
โข CREATE PROCEDURE
โข ALTER PROCEDURE
โข DROP PROCEDURE
โข EXECUTE PROCEDURE
โข User-Defined Functions (UDFs)
14.Triggers
โข Trigger Events
โข Trigger Execution and Syntax
15. Security and Permissions
โข CREATE USER
โข GRANT
โข REVOKE
โข ALTER USER
โข DROP USER
16.Optimizations
โข Indexing Strategies
โข Query Optimization
17.Normalization
โข 1NF(Normal Form)
โข 2NF
โข 3NF
โข BCNF
18.Backup and Recovery
โข Database Backups
โข Point-in-Time Recovery
19.NoSQL Databases
โข MongoDB
โข Cassandra etc...
โข Key differences
20. Data Integrity
โข Primary Key
โข Foreign Key
21.Advanced SQL Queries
โข Window Functions
โข Common Table Expressions (CTEs)
22.Full-Text Search
โข Full-Text Indexes
โข Search Optimization
23. Data Import and Export
โข Importing Data
โข Exporting Data (CSV, JSON)
โข Using SQL Dump Files
24.Database Design
โข Entity-Relationship Diagrams
โข Normalization Techniques
25.Advanced Indexing
โข Composite Indexes
โข Covering Indexes
26.Database Transactions
โข Savepoints
โข Nested Transactions
โข Two-Phase Commit Protocol
27.Performance Tuning
โข Query Profiling and Analysis
โข Query Cache Optimization
------------------ END -------------------
Some good resources to learn SQL
1.Tutorial & Courses
โข Learn SQL: https://bit.ly/3FxxKPz
โข Udacity: imp.i115008.net/AoAg7K
2. YouTube Channel's
โข FreeCodeCamp:rb.gy/pprz73
โข Programming with Mosh: rb.gy/g62hpe
3. Books
โข SQL in a Nutshell: https://t.iss.one/DataAnalystInterview/158
4. SQL Interview Questions
https://t.iss.one/sqlanalyst/72?single
Join @free4unow_backup for more free resourses
ENJOY LEARNING ๐๐
๐๐
1.Intro to SQL
โข Definition
โข Purpose
โข Relational DBs
โข DBMS
2.Basic SQL Syntax
โข SELECT
โข FROM
โข WHERE
โข ORDER BY
โข GROUP BY
3. Data Types
โข Integer
โข Floating-Point
โข Character
โข Date
โข VARCHAR
โข TEXT
โข BLOB
โข BOOLEAN
4.Sub languages
โข DML
โข DDL
โข DQL
โข DCL
โข TCL
5. Data Manipulation
โข INSERT
โข UPDATE
โข DELETE
6. Data Definition
โข CREATE
โข ALTER
โข DROP
โข Indexes
7.Query Filtering and Sorting
โข WHERE
โข AND
โข OR Conditions
โข Ascending
โข Descending
8. Data Aggregation
โข SUM
โข AVG
โข COUNT
โข MIN
โข MAX
9.Joins and Relationships
โข INNER JOIN
โข LEFT JOIN
โข RIGHT JOIN
โข Self-Joins
โข Cross Joins
โข FULL OUTER JOIN
10.Subqueries
โข Subqueries used in
โข Filtering data
โข Aggregating data
โข Joining tables
โข Correlated Subqueries
11.Views
โข Creating
โข Modifying
โข Dropping Views
12.Transactions
โข ACID Properties
โข COMMIT
โข ROLLBACK
โข SAVEPOINT
โข ROLLBACK TO SAVEPOINT
13.Stored Procedures
โข CREATE PROCEDURE
โข ALTER PROCEDURE
โข DROP PROCEDURE
โข EXECUTE PROCEDURE
โข User-Defined Functions (UDFs)
14.Triggers
โข Trigger Events
โข Trigger Execution and Syntax
15. Security and Permissions
โข CREATE USER
โข GRANT
โข REVOKE
โข ALTER USER
โข DROP USER
16.Optimizations
โข Indexing Strategies
โข Query Optimization
17.Normalization
โข 1NF(Normal Form)
โข 2NF
โข 3NF
โข BCNF
18.Backup and Recovery
โข Database Backups
โข Point-in-Time Recovery
19.NoSQL Databases
โข MongoDB
โข Cassandra etc...
โข Key differences
20. Data Integrity
โข Primary Key
โข Foreign Key
21.Advanced SQL Queries
โข Window Functions
โข Common Table Expressions (CTEs)
22.Full-Text Search
โข Full-Text Indexes
โข Search Optimization
23. Data Import and Export
โข Importing Data
โข Exporting Data (CSV, JSON)
โข Using SQL Dump Files
24.Database Design
โข Entity-Relationship Diagrams
โข Normalization Techniques
25.Advanced Indexing
โข Composite Indexes
โข Covering Indexes
26.Database Transactions
โข Savepoints
โข Nested Transactions
โข Two-Phase Commit Protocol
27.Performance Tuning
โข Query Profiling and Analysis
โข Query Cache Optimization
------------------ END -------------------
Some good resources to learn SQL
1.Tutorial & Courses
โข Learn SQL: https://bit.ly/3FxxKPz
โข Udacity: imp.i115008.net/AoAg7K
2. YouTube Channel's
โข FreeCodeCamp:rb.gy/pprz73
โข Programming with Mosh: rb.gy/g62hpe
3. Books
โข SQL in a Nutshell: https://t.iss.one/DataAnalystInterview/158
4. SQL Interview Questions
https://t.iss.one/sqlanalyst/72?single
Join @free4unow_backup for more free resourses
ENJOY LEARNING ๐๐
โค10
The Shift in Data Analyst Roles: What You Should Apply for in 2025
The traditional โData Analystโ title is gradually declining in demand in 2025 not because data is any less important, but because companies are getting more specific in what theyโre looking for.
Today, many roles that were once grouped under โData Analystโ are now split into more domain-focused titles, depending on the team or function they support.
Here are some roles gaining traction:
* Business Analyst
* Product Analyst
* Growth Analyst
* Marketing Analyst
* Financial Analyst
* Operations Analyst
* Risk Analyst
* Fraud Analyst
* Healthcare Analyst
* Technical Analyst
* Business Intelligence Analyst
* Decision Support Analyst
* Power BI Developer
* Tableau Developer
Focus on the skillsets and business context these roles demand.
Whether you're starting out or transitioning, look beyond "Data Analyst" and align your profile with industry-specific roles. Itโs not about the titleโitโs about the value you bring to a team.
The traditional โData Analystโ title is gradually declining in demand in 2025 not because data is any less important, but because companies are getting more specific in what theyโre looking for.
Today, many roles that were once grouped under โData Analystโ are now split into more domain-focused titles, depending on the team or function they support.
Here are some roles gaining traction:
* Business Analyst
* Product Analyst
* Growth Analyst
* Marketing Analyst
* Financial Analyst
* Operations Analyst
* Risk Analyst
* Fraud Analyst
* Healthcare Analyst
* Technical Analyst
* Business Intelligence Analyst
* Decision Support Analyst
* Power BI Developer
* Tableau Developer
Focus on the skillsets and business context these roles demand.
Whether you're starting out or transitioning, look beyond "Data Analyst" and align your profile with industry-specific roles. Itโs not about the titleโitโs about the value you bring to a team.
โค5๐1
๐ฅ ๐ฆ๐๐ผ๐ฝ ๐ช๐ฎ๐๐ฐ๐ต๐ถ๐ป๐ด ๐ง๐๐๐ผ๐ฟ๐ถ๐ฎ๐น๐.
๐ฆ๐๐ฎ๐ฟ๐ ๐ฃ๐ฟ๐ฎ๐ฐ๐๐ถ๐ฐ๐ถ๐ป๐ด ๐๐ถ๐ธ๐ฒ ๐ฎ ๐ฅ๐ฒ๐ฎ๐น ๐๐ฎ๐๐ฎ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ.
If you want ๐ท๐ผ๐ฏ-๐ฟ๐ฒ๐ฎ๐ฑ๐ ๐ฆ๐ค๐, ๐ฃ๐๐๐ต๐ผ๐ป, ๐ฃ๐๐ฆ๐ฝ๐ฎ๐ฟ๐ธ, ๐๐๐๐ฟ๐ฒ & ๐ฆ๐ป๐ผ๐๐ณ๐น๐ฎ๐ธ๐ฒ skills,
Hereโs where to practice and what exactly to practice because these are mainly expected in all the companies especially in EY, PwC, KPMG & Deloitte ๐
1๏ธโฃ ๐ฆ๐ค๐ โ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ฎ๐น & ๐ฃ๐ฟ๐ผ๐ฑ๐๐ฐ๐๐ถ๐ผ๐ป-๐๐ฒ๐๐ฒ๐น
LeetCode (SQL): https://lnkd.in/gudFeUbZ
HackerRank (SQL): https://lnkd.in/g9hpE6vQ
SQLZoo: https://sqlzoo.net/
โข JOINs (INNER, LEFT, RIGHT)
โข GROUP BY & HAVING
โข Window functions (ROW_NUMBER, RANK)
โข CTEs (WITH clause)
โข Query optimization logic
2๏ธโฃ ๐ฃ๐๐๐ต๐ผ๐ป โ ๐๐ฎ๐๐ฎ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ๐ถ๐ป๐ด ๐๐ผ๐ฐ๐๐
LeetCode (Python): https://lnkd.in/gaEvhsvi
HackerRank (Python): https://lnkd.in/gGHkAE47
Exercism (Python): https://lnkd.in/gAuvZmwZ
โข Functions & modules
โข File handling (CSV, JSON)
โข Data structures (list, dict)
โข Error handling & logging
โข Clean, readable code
3๏ธโฃ ๐ฃ๐๐ฆ๐ฝ๐ฎ๐ฟ๐ธ โ ๐๐ถ๐ด ๐๐ฎ๐๐ฎ ๐๐ฎ๐ป๐ฑ๐-๐ข๐ป
Databricks Community: https://lnkd.in/gpDTBDpq
SparkByExamples: https://lnkd.in/gfjnQ7Ud
Kaggle Notebooks: https://lnkd.in/gm7YU7Fp
โข DataFrames & transformations
โข Joins & aggregations
โข Partitioning & caching
โข Handling large datasets
โข Performance tuning basics
4๏ธโฃ ๐๐๐๐ฟ๐ฒ โ ๐๐ป๐ฑ-๐๐ผ-๐๐ป๐ฑ ๐๐ฎ๐๐ฎ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ๐ถ๐ป๐ด
Azure Free Account: https://lnkd.in/gk_Dpb9v
Microsoft Learn: https://lnkd.in/gb8nTnBf
Azure Data Factory: https://lnkd.in/ggpsYk7X
โข Data ingestion using ADF
โข ADLS Gen2 storage layers
โข Parameterized pipelines
โข Incremental data loads
โข Monitoring & debugging
5๏ธโฃ ๐ฆ๐ป๐ผ๐๐ณ๐น๐ฎ๐ธ๐ฒ โ ๐ฅ๐ฒ๐ฎ๐น ๐๐ฎ๐๐ฎ ๐ช๐ฎ๐ฟ๐ฒ๐ต๐ผ๐๐๐ถ๐ป๐ด
Snowflake Trial: https://lnkd.in/g2dHRA9f
Sample Data: https://lnkd.in/grsV2X47
Snowflake Learn: https://lnkd.in/gVpiNKHF
โข Data Loading and Unloading
โข Fact & dimension modeling
โข ELT inside Snowflake
โข Query Profile analysis
โข Cost & performance tuning
๐ฆ๐๐ฎ๐ฟ๐ ๐ฃ๐ฟ๐ฎ๐ฐ๐๐ถ๐ฐ๐ถ๐ป๐ด ๐๐ถ๐ธ๐ฒ ๐ฎ ๐ฅ๐ฒ๐ฎ๐น ๐๐ฎ๐๐ฎ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ.
If you want ๐ท๐ผ๐ฏ-๐ฟ๐ฒ๐ฎ๐ฑ๐ ๐ฆ๐ค๐, ๐ฃ๐๐๐ต๐ผ๐ป, ๐ฃ๐๐ฆ๐ฝ๐ฎ๐ฟ๐ธ, ๐๐๐๐ฟ๐ฒ & ๐ฆ๐ป๐ผ๐๐ณ๐น๐ฎ๐ธ๐ฒ skills,
Hereโs where to practice and what exactly to practice because these are mainly expected in all the companies especially in EY, PwC, KPMG & Deloitte ๐
1๏ธโฃ ๐ฆ๐ค๐ โ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ฎ๐น & ๐ฃ๐ฟ๐ผ๐ฑ๐๐ฐ๐๐ถ๐ผ๐ป-๐๐ฒ๐๐ฒ๐น
LeetCode (SQL): https://lnkd.in/gudFeUbZ
HackerRank (SQL): https://lnkd.in/g9hpE6vQ
SQLZoo: https://sqlzoo.net/
โข JOINs (INNER, LEFT, RIGHT)
โข GROUP BY & HAVING
โข Window functions (ROW_NUMBER, RANK)
โข CTEs (WITH clause)
โข Query optimization logic
2๏ธโฃ ๐ฃ๐๐๐ต๐ผ๐ป โ ๐๐ฎ๐๐ฎ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ๐ถ๐ป๐ด ๐๐ผ๐ฐ๐๐
LeetCode (Python): https://lnkd.in/gaEvhsvi
HackerRank (Python): https://lnkd.in/gGHkAE47
Exercism (Python): https://lnkd.in/gAuvZmwZ
โข Functions & modules
โข File handling (CSV, JSON)
โข Data structures (list, dict)
โข Error handling & logging
โข Clean, readable code
3๏ธโฃ ๐ฃ๐๐ฆ๐ฝ๐ฎ๐ฟ๐ธ โ ๐๐ถ๐ด ๐๐ฎ๐๐ฎ ๐๐ฎ๐ป๐ฑ๐-๐ข๐ป
Databricks Community: https://lnkd.in/gpDTBDpq
SparkByExamples: https://lnkd.in/gfjnQ7Ud
Kaggle Notebooks: https://lnkd.in/gm7YU7Fp
โข DataFrames & transformations
โข Joins & aggregations
โข Partitioning & caching
โข Handling large datasets
โข Performance tuning basics
4๏ธโฃ ๐๐๐๐ฟ๐ฒ โ ๐๐ป๐ฑ-๐๐ผ-๐๐ป๐ฑ ๐๐ฎ๐๐ฎ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ๐ถ๐ป๐ด
Azure Free Account: https://lnkd.in/gk_Dpb9v
Microsoft Learn: https://lnkd.in/gb8nTnBf
Azure Data Factory: https://lnkd.in/ggpsYk7X
โข Data ingestion using ADF
โข ADLS Gen2 storage layers
โข Parameterized pipelines
โข Incremental data loads
โข Monitoring & debugging
5๏ธโฃ ๐ฆ๐ป๐ผ๐๐ณ๐น๐ฎ๐ธ๐ฒ โ ๐ฅ๐ฒ๐ฎ๐น ๐๐ฎ๐๐ฎ ๐ช๐ฎ๐ฟ๐ฒ๐ต๐ผ๐๐๐ถ๐ป๐ด
Snowflake Trial: https://lnkd.in/g2dHRA9f
Sample Data: https://lnkd.in/grsV2X47
Snowflake Learn: https://lnkd.in/gVpiNKHF
โข Data Loading and Unloading
โข Fact & dimension modeling
โข ELT inside Snowflake
โข Query Profile analysis
โข Cost & performance tuning
lnkd.in
LinkedIn
This link will take you to a page thatโs not on LinkedIn
โค2