Avoid directly copying YouTube projects onto your resume because if everyone looks the same, recruiters might discard resumes.
Instead, for eg, let's say you are working on a SQL case study, download a dataset from Kaggle (usually a CSV file), set up a Postgre/MySQL database, connect it with the data, and prompt ChatGPT with questions ranging from basic to advanced SQL.
Solve the questions step by step. When using PowerBI, connect to the database and create a compelling dashboard. Don't just upload the dataset; employ DAX queries, statistical functions, and avoid relying solely on drag-and-drop features. Use Formatting section to do creative stuff and add your unique element in the project.
ENJOY LEARNING ๐๐
Instead, for eg, let's say you are working on a SQL case study, download a dataset from Kaggle (usually a CSV file), set up a Postgre/MySQL database, connect it with the data, and prompt ChatGPT with questions ranging from basic to advanced SQL.
Solve the questions step by step. When using PowerBI, connect to the database and create a compelling dashboard. Don't just upload the dataset; employ DAX queries, statistical functions, and avoid relying solely on drag-and-drop features. Use Formatting section to do creative stuff and add your unique element in the project.
ENJOY LEARNING ๐๐
โค6
๐ SQL Challenges for Data Analytics โ With Explanation ๐ง
(Beginner โก๏ธ Advanced)
1๏ธโฃ Select Specific Columns
This fetches only the
โ๏ธ Used when you donโt want all columns from a table.
2๏ธโฃ Filter Records with WHERE
The
โ๏ธ Used for applying conditions on data.
3๏ธโฃ ORDER BY Clause
Sorts all users based on
โ๏ธ Helpful to get latest data first.
4๏ธโฃ Aggregate Functions (COUNT, AVG)
Explanation:
-
-
โ๏ธ Used for quick stats from tables.
5๏ธโฃ GROUP BY Usage
Groups data by
โ๏ธ Use when you want grouped summaries.
6๏ธโฃ JOIN Tables
Fetches user names along with order amounts by joining
โ๏ธ Essential when combining data from multiple tables.
7๏ธโฃ Use of HAVING
Like
โ๏ธ **Use
8๏ธโฃ Subqueries
Finds users whose salary is above the average. The subquery calculates the average salary first.
โ๏ธ Nested queries for dynamic filtering9๏ธโฃ CASE Statementnt**
Adds a new column that classifies users into categories based on age.
โ๏ธ Powerful for conditional logic.
๐ Window Functions (Advanced)
Ranks users by score *within each city*.
SQL Learning Series: https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v/1075
(Beginner โก๏ธ Advanced)
1๏ธโฃ Select Specific Columns
SELECT name, email FROM users;
This fetches only the
name and email columns from the users table. โ๏ธ Used when you donโt want all columns from a table.
2๏ธโฃ Filter Records with WHERE
SELECT * FROM users WHERE age > 30;
The
WHERE clause filters rows where age is greater than 30. โ๏ธ Used for applying conditions on data.
3๏ธโฃ ORDER BY Clause
SELECT * FROM users ORDER BY registered_at DESC;
Sorts all users based on
registered_at in descending order. โ๏ธ Helpful to get latest data first.
4๏ธโฃ Aggregate Functions (COUNT, AVG)
SELECT COUNT(*) AS total_users, AVG(age) AS avg_age FROM users;
Explanation:
-
COUNT(*) counts total rows (users). -
AVG(age) calculates the average age. โ๏ธ Used for quick stats from tables.
5๏ธโฃ GROUP BY Usage
SELECT city, COUNT(*) AS user_count FROM users GROUP BY city;
Groups data by
city and counts users in each group. โ๏ธ Use when you want grouped summaries.
6๏ธโฃ JOIN Tables
SELECT users.name, orders.amount
FROM users
JOIN orders ON users.id = orders.user_id;
Fetches user names along with order amounts by joining
users and orders on matching IDs. โ๏ธ Essential when combining data from multiple tables.
7๏ธโฃ Use of HAVING
SELECT city, COUNT(*) AS total
FROM users
GROUP BY city
HAVING COUNT(*) > 5;
Like
WHERE, but used with aggregates. This filters cities with more than 5 users. โ๏ธ **Use
HAVING after GROUP BY.**8๏ธโฃ Subqueries
SELECT * FROM users
WHERE salary > (SELECT AVG(salary) FROM users);
Finds users whose salary is above the average. The subquery calculates the average salary first.
โ๏ธ Nested queries for dynamic filtering9๏ธโฃ CASE Statementnt**
SELECT name,
CASE
WHEN age < 18 THEN 'Teen'
WHEN age <= 40 THEN 'Adult'
ELSE 'Senior'
END AS age_group
FROM users;
Adds a new column that classifies users into categories based on age.
โ๏ธ Powerful for conditional logic.
๐ Window Functions (Advanced)
SELECT name, city, score,
RANK() OVER (PARTITION BY city ORDER BY score DESC) AS rank
FROM users;
Ranks users by score *within each city*.
SQL Learning Series: https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v/1075
โค4๐ค1
Data analytics offers excellent job prospects in 2025, with numerous opportunities across various industries.
Job Market Overview
Data analyst jobs are experiencing rapid growth, with an expected expansion in multiple sectors.
- High Demand Roles:
- Data Scientist
- Business Intelligence Analyst
- Financial Analyst
- Marketing Analyst
- Healthcare Data Analyst
Skills Required
Top skills for success in data analytics include:
- Technical Skills:
- Python and R programming
- SQL database management
- Data manipulation and cleaning
- Statistical analysis
- Power BI or Tableau
- Machine learning basics
Salary Expectations
Average salaries vary by role:
- Data Scientist: ~$122,738 per year
- Data Analyst: Around INR 6L per annum
- Entry-level Data Analyst: ~$83,011 annually[2]
Job Search Strategies
- Utilize job portals like LinkedIn, Indeed & telegram
- Attend industry conferences and webinars
- Network with professionals
- Check company career pages
- Consider recruitment agencies specializing in tech roles
I have curated best 80+ top-notch Data Analytics Resources ๐๐
https://t.iss.one/DataSimplifier
Like this post for if you want me to continue the interview series ๐โฅ๏ธ
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
Job Market Overview
Data analyst jobs are experiencing rapid growth, with an expected expansion in multiple sectors.
- High Demand Roles:
- Data Scientist
- Business Intelligence Analyst
- Financial Analyst
- Marketing Analyst
- Healthcare Data Analyst
Skills Required
Top skills for success in data analytics include:
- Technical Skills:
- Python and R programming
- SQL database management
- Data manipulation and cleaning
- Statistical analysis
- Power BI or Tableau
- Machine learning basics
Salary Expectations
Average salaries vary by role:
- Data Scientist: ~$122,738 per year
- Data Analyst: Around INR 6L per annum
- Entry-level Data Analyst: ~$83,011 annually[2]
Job Search Strategies
- Utilize job portals like LinkedIn, Indeed & telegram
- Attend industry conferences and webinars
- Network with professionals
- Check company career pages
- Consider recruitment agencies specializing in tech roles
I have curated best 80+ top-notch Data Analytics Resources ๐๐
https://t.iss.one/DataSimplifier
Like this post for if you want me to continue the interview series ๐โฅ๏ธ
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
โค2
Data Analyst vs Data Scientist: Must-Know Differences
Data Analyst:
- Role: Primarily focuses on interpreting data, identifying trends, and creating reports that inform business decisions.
- Best For: Individuals who enjoy working with existing data to uncover insights and support decision-making in business processes.
- Key Responsibilities:
- Collecting, cleaning, and organizing data from various sources.
- Performing descriptive analytics to summarize the data (trends, patterns, anomalies).
- Creating reports and dashboards using tools like Excel, SQL, Power BI, and Tableau.
- Collaborating with business stakeholders to provide data-driven insights and recommendations.
- Skills Required:
- Proficiency in data visualization tools (e.g., Power BI, Tableau).
- Strong analytical and statistical skills, along with expertise in SQL and Excel.
- Familiarity with business intelligence and basic programming (optional).
- Outcome: Data analysts provide actionable insights to help companies make informed decisions by analyzing and visualizing data, often focusing on current and historical trends.
Data Scientist:
- Role: Combines statistical methods, machine learning, and programming to build predictive models and derive deeper insights from data.
- Best For: Individuals who enjoy working with complex datasets, developing algorithms, and using advanced analytics to solve business problems.
- Key Responsibilities:
- Designing and developing machine learning models for predictive analytics.
- Collecting, processing, and analyzing large datasets (structured and unstructured).
- Using statistical methods, algorithms, and data mining to uncover hidden patterns.
- Writing and maintaining code in programming languages like Python, R, and SQL.
- Working with big data technologies and cloud platforms for scalable solutions.
- Skills Required:
- Proficiency in programming languages like Python, R, and SQL.
- Strong understanding of machine learning algorithms, statistics, and data modeling.
- Experience with big data tools (e.g., Hadoop, Spark) and cloud platforms (AWS, Azure).
- Outcome: Data scientists develop models that predict future outcomes and drive innovation through advanced analytics, going beyond what has happened to explain why it happened and what will happen next.
Data analysts focus on analyzing and visualizing existing data to provide insights for current business challenges, while data scientists apply advanced algorithms and machine learning to predict future outcomes and derive deeper insights. Data scientists typically handle more complex problems and require a stronger background in statistics, programming, and machine learning.
Data Analyst WhatsApp channel: https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Data Science WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
ENJOY LEARNING ๐๐
Data Analyst:
- Role: Primarily focuses on interpreting data, identifying trends, and creating reports that inform business decisions.
- Best For: Individuals who enjoy working with existing data to uncover insights and support decision-making in business processes.
- Key Responsibilities:
- Collecting, cleaning, and organizing data from various sources.
- Performing descriptive analytics to summarize the data (trends, patterns, anomalies).
- Creating reports and dashboards using tools like Excel, SQL, Power BI, and Tableau.
- Collaborating with business stakeholders to provide data-driven insights and recommendations.
- Skills Required:
- Proficiency in data visualization tools (e.g., Power BI, Tableau).
- Strong analytical and statistical skills, along with expertise in SQL and Excel.
- Familiarity with business intelligence and basic programming (optional).
- Outcome: Data analysts provide actionable insights to help companies make informed decisions by analyzing and visualizing data, often focusing on current and historical trends.
Data Scientist:
- Role: Combines statistical methods, machine learning, and programming to build predictive models and derive deeper insights from data.
- Best For: Individuals who enjoy working with complex datasets, developing algorithms, and using advanced analytics to solve business problems.
- Key Responsibilities:
- Designing and developing machine learning models for predictive analytics.
- Collecting, processing, and analyzing large datasets (structured and unstructured).
- Using statistical methods, algorithms, and data mining to uncover hidden patterns.
- Writing and maintaining code in programming languages like Python, R, and SQL.
- Working with big data technologies and cloud platforms for scalable solutions.
- Skills Required:
- Proficiency in programming languages like Python, R, and SQL.
- Strong understanding of machine learning algorithms, statistics, and data modeling.
- Experience with big data tools (e.g., Hadoop, Spark) and cloud platforms (AWS, Azure).
- Outcome: Data scientists develop models that predict future outcomes and drive innovation through advanced analytics, going beyond what has happened to explain why it happened and what will happen next.
Data analysts focus on analyzing and visualizing existing data to provide insights for current business challenges, while data scientists apply advanced algorithms and machine learning to predict future outcomes and derive deeper insights. Data scientists typically handle more complex problems and require a stronger background in statistics, programming, and machine learning.
Data Analyst WhatsApp channel: https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Data Science WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
ENJOY LEARNING ๐๐
โค1
Python Interview Questions:
Ready to test your Python skills? Letโs get started! ๐ป
1. How to check if a string is a palindrome?
2. How to find the factorial of a number using recursion?
3. How to merge two dictionaries in Python?
4. How to find the intersection of two lists?
5. How to generate a list of even numbers from 1 to 100?
6. How to find the longest word in a sentence?
7. How to count the frequency of elements in a list?
8. How to remove duplicates from a list while maintaining the order?
9. How to reverse a linked list in Python?
10. How to implement a simple binary search algorithm?
Here you can find essential Python Interview Resources๐
https://t.iss.one/DataSimplifier
Like for more resources like this ๐ โฅ๏ธ
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
Ready to test your Python skills? Letโs get started! ๐ป
1. How to check if a string is a palindrome?
def is_palindrome(s):
return s == s[::-1]
print(is_palindrome("madam")) # True
print(is_palindrome("hello")) # False
2. How to find the factorial of a number using recursion?
def factorial(n):
if n == 0 or n == 1:
return 1
return n * factorial(n - 1)
print(factorial(5)) # 120
3. How to merge two dictionaries in Python?
dict1 = {'a': 1, 'b': 2}
dict2 = {'c': 3, 'd': 4}
# Method 1 (Python 3.5+)
merged_dict = {**dict1, **dict2}
# Method 2 (Python 3.9+)
merged_dict = dict1 | dict2
print(merged_dict)4. How to find the intersection of two lists?
list1 = [1, 2, 3, 4]
list2 = [3, 4, 5, 6]
intersection = list(set(list1) & set(list2))
print(intersection) # [3, 4]
5. How to generate a list of even numbers from 1 to 100?
even_numbers = [i for i in range(1, 101) if i % 2 == 0]
print(even_numbers)
6. How to find the longest word in a sentence?
def longest_word(sentence):
words = sentence.split()
return max(words, key=len)
print(longest_word("Python is a powerful language")) # "powerful"
7. How to count the frequency of elements in a list?
from collections import Counter
my_list = [1, 2, 2, 3, 3, 3, 4]
frequency = Counter(my_list)
print(frequency) # Counter({3: 3, 2: 2, 1: 1, 4: 1})
8. How to remove duplicates from a list while maintaining the order?
def remove_duplicates(lst):
return list(dict.fromkeys(lst))
my_list = [1, 2, 2, 3, 4, 4, 5]
print(remove_duplicates(my_list)) # [1, 2, 3, 4, 5]
9. How to reverse a linked list in Python?
class Node:
def __init__(self, data):
self.data = data
self.next = None
def reverse_linked_list(head):
prev = None
current = head
while current:
next_node = current.next
current.next = prev
prev = current
current = next_node
return prev
# Create linked list: 1 -> 2 -> 3
head = Node(1)
head.next = Node(2)
head.next.next = Node(3)
# Reverse and print the list
reversed_head = reverse_linked_list(head)
while reversed_head:
print(reversed_head.data, end=" -> ")
reversed_head = reversed_head.next
10. How to implement a simple binary search algorithm?
def binary_search(arr, target):
low, high = 0, len(arr) - 1
while low <= high:
mid = (low + high) // 2
if arr[mid] == target:
return mid
elif arr[mid] < target:
low = mid + 1
else:
high = mid - 1
return -1
print(binary_search([1, 2, 3, 4, 5, 6, 7], 4)) # 3
Here you can find essential Python Interview Resources๐
https://t.iss.one/DataSimplifier
Like for more resources like this ๐ โฅ๏ธ
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
โค4
๐ฏ ๐๐ฌ๐ฌ๐๐ง๐ญ๐ข๐๐ฅ ๐๐๐๐ ๐๐๐๐๐๐๐ ๐๐๐๐๐๐ ๐๐ก๐๐ญ ๐๐๐๐ซ๐ฎ๐ข๐ญ๐๐ซ๐ฌ ๐๐จ๐จ๐ค ๐
๐จ๐ซ ๐ฏ
If you're applying for Data Analyst roles, having technical skills like SQL and Power BI is importantโbut recruiters look for more than just tools!
๐น 1๏ธโฃ ๐๐๐ ๐ข๐ฌ ๐๐๐๐ ๐โ๐๐๐ฌ๐ญ๐๐ซ ๐๐ญ
โ Know how to write optimized queries (not just SELECT * from everywhere!)
โ Be comfortable with JOINS, CTEs, Window Functions & Performance Optimization
โ Practice solving real-world business scenarios using SQL
๐ก Example Question: How would you find the top 5 best-selling products in each category using SQL?
๐น 2๏ธโฃ ๐๐ฎ๐ฌ๐ข๐ง๐๐ฌ๐ฌ ๐๐๐ฎ๐ฆ๐๐ง: ๐๐ก๐ข๐ง๐ค ๐๐ข๐ค๐ ๐ ๐๐๐๐ข๐ฌ๐ข๐จ๐ง-๐๐๐ค๐๐ซ
โ Understand the why behind the dataโnot just the numbers
โ Learn how to frame insights for different stakeholders (Tech & Non-Tech)
โ Use data storytellingโsimplify complex findings into actionable takeaways
๐ก Example: Instead of saying, "Revenue increased by 12%," say "Revenue increased 12% after launching a targeted discount campaign, driving a 20% increase in repeat purchases."
๐น 3๏ธโฃ ๐๐จ๐ฐ๐๐ซ ๐๐ / ๐๐๐๐ฅ๐๐๐ฎโ๐๐๐ค๐ ๐๐๐ฌ๐ก๐๐จ๐๐ซ๐๐ฌ ๐๐ก๐๐ญ ๐๐ฉ๐๐๐ค!
โ Avoid overloading dashboards with too many visualsโfocus on key KPIs
โ Use interactive elements (filters, drill-throughs) for better usability
โ Keep visuals simple & clearโbar charts are better than complex pie charts!
๐ก Tip: Before creating a dashboard, ask: "What business problem does this solve?"
๐น 4๏ธโฃ ๐๐ฒ๐ญ๐ก๐จ๐ง & ๐๐ฑ๐๐๐ฅโ๐๐๐ง๐๐ฅ๐ ๐๐๐ญ๐ ๐๐๐๐ข๐๐ข๐๐ง๐ญ๐ฅ๐ฒ
โ Python for data wrangling, EDA & automation (Pandas, NumPy, Seaborn)
โ Excel for quick analysis, PivotTables, VLOOKUP/XLOOKUP, Power Query
โ Know when to use Excel vs. Python (hint: small vs. large datasets)
Being a Data Analyst is more than just running queriesโitโs about understanding the business, making insights actionable, and communicating effectively!
Free Resources: https://t.iss.one/sqlspecialist
If you're applying for Data Analyst roles, having technical skills like SQL and Power BI is importantโbut recruiters look for more than just tools!
๐น 1๏ธโฃ ๐๐๐ ๐ข๐ฌ ๐๐๐๐ ๐โ๐๐๐ฌ๐ญ๐๐ซ ๐๐ญ
โ Know how to write optimized queries (not just SELECT * from everywhere!)
โ Be comfortable with JOINS, CTEs, Window Functions & Performance Optimization
โ Practice solving real-world business scenarios using SQL
๐ก Example Question: How would you find the top 5 best-selling products in each category using SQL?
๐น 2๏ธโฃ ๐๐ฎ๐ฌ๐ข๐ง๐๐ฌ๐ฌ ๐๐๐ฎ๐ฆ๐๐ง: ๐๐ก๐ข๐ง๐ค ๐๐ข๐ค๐ ๐ ๐๐๐๐ข๐ฌ๐ข๐จ๐ง-๐๐๐ค๐๐ซ
โ Understand the why behind the dataโnot just the numbers
โ Learn how to frame insights for different stakeholders (Tech & Non-Tech)
โ Use data storytellingโsimplify complex findings into actionable takeaways
๐ก Example: Instead of saying, "Revenue increased by 12%," say "Revenue increased 12% after launching a targeted discount campaign, driving a 20% increase in repeat purchases."
๐น 3๏ธโฃ ๐๐จ๐ฐ๐๐ซ ๐๐ / ๐๐๐๐ฅ๐๐๐ฎโ๐๐๐ค๐ ๐๐๐ฌ๐ก๐๐จ๐๐ซ๐๐ฌ ๐๐ก๐๐ญ ๐๐ฉ๐๐๐ค!
โ Avoid overloading dashboards with too many visualsโfocus on key KPIs
โ Use interactive elements (filters, drill-throughs) for better usability
โ Keep visuals simple & clearโbar charts are better than complex pie charts!
๐ก Tip: Before creating a dashboard, ask: "What business problem does this solve?"
๐น 4๏ธโฃ ๐๐ฒ๐ญ๐ก๐จ๐ง & ๐๐ฑ๐๐๐ฅโ๐๐๐ง๐๐ฅ๐ ๐๐๐ญ๐ ๐๐๐๐ข๐๐ข๐๐ง๐ญ๐ฅ๐ฒ
โ Python for data wrangling, EDA & automation (Pandas, NumPy, Seaborn)
โ Excel for quick analysis, PivotTables, VLOOKUP/XLOOKUP, Power Query
โ Know when to use Excel vs. Python (hint: small vs. large datasets)
Being a Data Analyst is more than just running queriesโitโs about understanding the business, making insights actionable, and communicating effectively!
Free Resources: https://t.iss.one/sqlspecialist
โค3๐1
90% of jobs require Excel skills.
But most people underestimate its importance.
Here're 7 Excel hacks you don't want to miss: ๐งต ๐๐ป
1. Quick Data Analysis:
โข Select a cell in your data.
โข Home > Analyze Data.
โข Choose an option and click Insert PivotChart.
Like for more โค๏ธ
2. Freeze columns/rows:
โข Select the cell below and to the right of what you want to freeze
โข Click View > Freeze Panes > Freeze Panes
3. If Function
โข Open Excel and choose a cell.
โข Insert IF function.
โข Apply and repeat conditions.
โข Close bracket and press Enter.
4. Quick Data Analysis:
โข Select a cell in your data.
โข Home > Analyze Data.
โข Choose an option (Rank, Trend, Outlier, Majority) and click Insert PivotChart.
5. Format numbers in cells:
โข Press CTRL + 1 and select Number.
โข Right-click the cell or cell range, select Format Cellsโฆ , and select Number.
โข Select the small arrow, dialog box launcher, and then select Number.
6. Creating Excel formulas:
โข Select a cell and Type "="
โข Type a cell or function (e.g., SUM)
โข Add an operator or range
โข Press Enter to see the result in the cell; the formula appears in the Formula bar
7. SUMIFS function:
โข Select an empty cell.
โข Determine the initial cell range.
โข Determine the SUMIF criteria.
โข Determine your sum_range criteria.
Ask smart questions
The right question can reveal more than a hundred answers. Make them think while you gather intel.
But most people underestimate its importance.
Here're 7 Excel hacks you don't want to miss: ๐งต ๐๐ป
1. Quick Data Analysis:
โข Select a cell in your data.
โข Home > Analyze Data.
โข Choose an option and click Insert PivotChart.
Like for more โค๏ธ
2. Freeze columns/rows:
โข Select the cell below and to the right of what you want to freeze
โข Click View > Freeze Panes > Freeze Panes
3. If Function
โข Open Excel and choose a cell.
โข Insert IF function.
โข Apply and repeat conditions.
โข Close bracket and press Enter.
4. Quick Data Analysis:
โข Select a cell in your data.
โข Home > Analyze Data.
โข Choose an option (Rank, Trend, Outlier, Majority) and click Insert PivotChart.
5. Format numbers in cells:
โข Press CTRL + 1 and select Number.
โข Right-click the cell or cell range, select Format Cellsโฆ , and select Number.
โข Select the small arrow, dialog box launcher, and then select Number.
6. Creating Excel formulas:
โข Select a cell and Type "="
โข Type a cell or function (e.g., SUM)
โข Add an operator or range
โข Press Enter to see the result in the cell; the formula appears in the Formula bar
7. SUMIFS function:
โข Select an empty cell.
โข Determine the initial cell range.
โข Determine the SUMIF criteria.
โข Determine your sum_range criteria.
Ask smart questions
The right question can reveal more than a hundred answers. Make them think while you gather intel.
โค4
Hi guys,
Here is the list of useful WhatsApp channels to learn something new everyday:
Learn English Speaking & Communication Skills: https://whatsapp.com/channel/0029VaiaucV4NVik7Fx6HN2n
English Grammar: https://whatsapp.com/channel/0029VbAGXBSFHWpwBmVfdk42
English Language: https://whatsapp.com/channel/0029VbB5OQi2ER6kZBQWWw20
English Tutorials: https://whatsapp.com/channel/0029Vb5si0cHgZWkwLUiQD0M
English Speaking: https://whatsapp.com/channel/0029VbApHoXJUM2eLAE62u3R
Health Fitness & Diet Tips: https://whatsapp.com/channel/0029VazUhie6RGJIYNbHCt3B
English to Hindi: https://whatsapp.com/channel/0029VbB8KLPDDmFWgXKOcn1e
IELTS: https://whatsapp.com/channel/0029VbB2rFRJpe8gKhBgGf0H
Programming: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Quotes: https://whatsapp.com/channel/0029VbBGEUx4tRrtFAHmUS3P
Relationship Goals: https://whatsapp.com/channel/0029VbAdGUZG3R3jqKVnVW0a
Stock Marketing: https://whatsapp.com/channel/0029VatOdpD2f3EPbBlLYW0h
Fitness Tips: https://whatsapp.com/channel/0029VbAqCf21NCrb6SpmYW1r
Food Recipes: https://whatsapp.com/channel/0029VbBA3PF0VycHvzY8D21T
Food Lovers: https://whatsapp.com/channel/0029VbBUazl23n3avm7hYj40
Life Goals: https://whatsapp.com/channel/0029VbAvlMT4o7qIqnRTn23K
Learn Everyday: https://whatsapp.com/channel/0029Vb5fqrY2kNFmUX9Jzc0g
India News: https://whatsapp.com/channel/0029Vb5zBu590x2xlIV9zf0g
Free Courses with Certificate: https://whatsapp.com/channel/0029VbB8ROL4inogeP9o8E1l
Jobs: https://whatsapp.com/channel/0029VaI5CV93AzNUiZ5Tt226
Artificial Intelligence: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
ChatGPT: https://whatsapp.com/channel/0029VapThS265yDAfwe97c23
English to Hindi: https://whatsapp.com/channel/0029VbB8KLPDDmFWgXKOcn1e
AI News: https://whatsapp.com/channel/0029VbAWNue1iUxjLo2DFx2U
AI Tools: https://whatsapp.com/channel/0029VaojSv9LCoX0gBZUxX3B
Words of Wisdom: https://whatsapp.com/channel/0029VavaBiTDeON0O54Bca0q
Motivation: https://whatsapp.com/channel/0029Vb6GfXk7z4kkJmfdqy1v
Daily GK: https://whatsapp.com/channel/0029VbArb9L8kyyTDyrUVp2J
Best WhatsApp Channels: https://whatsapp.com/channel/0029Vb5iu5aChq6MLwKHyT3G
Hindi Language: https://whatsapp.com/channel/0029VbAfJtl7DAX6gaZDnJ0Z
Food Recipes: https://whatsapp.com/channel/0029VbBA3PF0VycHvzY8D21T
Great India: https://whatsapp.com/channel/0029VbAR70f1CYoMKpTRJJ0V
English Grammar: https://whatsapp.com/channel/0029VbAGXBSFHWpwBmVfdk42
Crypto: https://whatsapp.com/channel/0029Vb3H903DOQIUyaFTuw3P
Fluent English: https://whatsapp.com/channel/0029Vb5jWRqDJ6GxSjK44K2T
Digital Marketing: https://whatsapp.com/channel/0029VbAuBjwLSmbjUbItjM1t
Spanish Language: https://whatsapp.com/channel/0029Vb5wGpz0AgW5CJ8SPr3i
German Language: https://whatsapp.com/channel/0029VbAtPdR7DAX1kIYjtF2F
French Language: https://whatsapp.com/channel/0029Vb5vJOWD8SE6d9aevl3o
Korean Language: https://whatsapp.com/channel/0029VbAkrhvFnSz5O9DSia0u
Japanese Language: https://whatsapp.com/channel/0029VbAorO87dmeUQlcwvn0Z
Finance & Marketing Jobs: https://whatsapp.com/channel/0029VbAoISO4yltKrPgMST45
Delicious Food: https://whatsapp.com/channel/0029VbAZk6V0lwgvLk2pe01w
Russian Language: https://whatsapp.com/channel/0029Vb5qGb8ADTO62OWsSV2T
Marketing: https://whatsapp.com/channel/0029VbB4goz6rsR1YtmiFV3f
Chinese Language: https://whatsapp.com/channel/0029VbAsXbXFsn0iUXfydB2l
Portuguese Language: https://whatsapp.com/channel/0029VbB3UzvD8SE69ih7y61f
Italian Language: https://whatsapp.com/channel/0029VbAaAQQA89MkPc4gCX2g
Arabic Language: https://whatsapp.com/channel/0029VbAmvm3EQIav8qmjob0N
Corporate English: https://whatsapp.com/channel/0029VbAKJXWAu3aWITpJE914
Hindi Grammar: https://whatsapp.com/channel/0029VbAYzJJ0rGiHll5FUz3c
Travel World: https://whatsapp.com/channel/0029VbB4Gk047XeAxrojys0q
DOUBLE TAP โค๏ธ IF THIS HELPED YOU
Here is the list of useful WhatsApp channels to learn something new everyday:
Learn English Speaking & Communication Skills: https://whatsapp.com/channel/0029VaiaucV4NVik7Fx6HN2n
English Grammar: https://whatsapp.com/channel/0029VbAGXBSFHWpwBmVfdk42
English Language: https://whatsapp.com/channel/0029VbB5OQi2ER6kZBQWWw20
English Tutorials: https://whatsapp.com/channel/0029Vb5si0cHgZWkwLUiQD0M
English Speaking: https://whatsapp.com/channel/0029VbApHoXJUM2eLAE62u3R
Health Fitness & Diet Tips: https://whatsapp.com/channel/0029VazUhie6RGJIYNbHCt3B
English to Hindi: https://whatsapp.com/channel/0029VbB8KLPDDmFWgXKOcn1e
IELTS: https://whatsapp.com/channel/0029VbB2rFRJpe8gKhBgGf0H
Programming: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Quotes: https://whatsapp.com/channel/0029VbBGEUx4tRrtFAHmUS3P
Relationship Goals: https://whatsapp.com/channel/0029VbAdGUZG3R3jqKVnVW0a
Stock Marketing: https://whatsapp.com/channel/0029VatOdpD2f3EPbBlLYW0h
Fitness Tips: https://whatsapp.com/channel/0029VbAqCf21NCrb6SpmYW1r
Food Recipes: https://whatsapp.com/channel/0029VbBA3PF0VycHvzY8D21T
Food Lovers: https://whatsapp.com/channel/0029VbBUazl23n3avm7hYj40
Life Goals: https://whatsapp.com/channel/0029VbAvlMT4o7qIqnRTn23K
Learn Everyday: https://whatsapp.com/channel/0029Vb5fqrY2kNFmUX9Jzc0g
India News: https://whatsapp.com/channel/0029Vb5zBu590x2xlIV9zf0g
Free Courses with Certificate: https://whatsapp.com/channel/0029VbB8ROL4inogeP9o8E1l
Jobs: https://whatsapp.com/channel/0029VaI5CV93AzNUiZ5Tt226
Artificial Intelligence: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
ChatGPT: https://whatsapp.com/channel/0029VapThS265yDAfwe97c23
English to Hindi: https://whatsapp.com/channel/0029VbB8KLPDDmFWgXKOcn1e
AI News: https://whatsapp.com/channel/0029VbAWNue1iUxjLo2DFx2U
AI Tools: https://whatsapp.com/channel/0029VaojSv9LCoX0gBZUxX3B
Words of Wisdom: https://whatsapp.com/channel/0029VavaBiTDeON0O54Bca0q
Motivation: https://whatsapp.com/channel/0029Vb6GfXk7z4kkJmfdqy1v
Daily GK: https://whatsapp.com/channel/0029VbArb9L8kyyTDyrUVp2J
Best WhatsApp Channels: https://whatsapp.com/channel/0029Vb5iu5aChq6MLwKHyT3G
Hindi Language: https://whatsapp.com/channel/0029VbAfJtl7DAX6gaZDnJ0Z
Food Recipes: https://whatsapp.com/channel/0029VbBA3PF0VycHvzY8D21T
Great India: https://whatsapp.com/channel/0029VbAR70f1CYoMKpTRJJ0V
English Grammar: https://whatsapp.com/channel/0029VbAGXBSFHWpwBmVfdk42
Crypto: https://whatsapp.com/channel/0029Vb3H903DOQIUyaFTuw3P
Fluent English: https://whatsapp.com/channel/0029Vb5jWRqDJ6GxSjK44K2T
Digital Marketing: https://whatsapp.com/channel/0029VbAuBjwLSmbjUbItjM1t
Spanish Language: https://whatsapp.com/channel/0029Vb5wGpz0AgW5CJ8SPr3i
German Language: https://whatsapp.com/channel/0029VbAtPdR7DAX1kIYjtF2F
French Language: https://whatsapp.com/channel/0029Vb5vJOWD8SE6d9aevl3o
Korean Language: https://whatsapp.com/channel/0029VbAkrhvFnSz5O9DSia0u
Japanese Language: https://whatsapp.com/channel/0029VbAorO87dmeUQlcwvn0Z
Finance & Marketing Jobs: https://whatsapp.com/channel/0029VbAoISO4yltKrPgMST45
Delicious Food: https://whatsapp.com/channel/0029VbAZk6V0lwgvLk2pe01w
Russian Language: https://whatsapp.com/channel/0029Vb5qGb8ADTO62OWsSV2T
Marketing: https://whatsapp.com/channel/0029VbB4goz6rsR1YtmiFV3f
Chinese Language: https://whatsapp.com/channel/0029VbAsXbXFsn0iUXfydB2l
Portuguese Language: https://whatsapp.com/channel/0029VbB3UzvD8SE69ih7y61f
Italian Language: https://whatsapp.com/channel/0029VbAaAQQA89MkPc4gCX2g
Arabic Language: https://whatsapp.com/channel/0029VbAmvm3EQIav8qmjob0N
Corporate English: https://whatsapp.com/channel/0029VbAKJXWAu3aWITpJE914
Hindi Grammar: https://whatsapp.com/channel/0029VbAYzJJ0rGiHll5FUz3c
Travel World: https://whatsapp.com/channel/0029VbB4Gk047XeAxrojys0q
DOUBLE TAP โค๏ธ IF THIS HELPED YOU
โค3
Useful Power BI functions for data analysts:
1. CALCULATE: Changes the filter context for calculations, making dynamic measures easy.
2. SUMX: Performs row-by-row calculations, perfect for things like multiplying quantity and price before summing.
3. FILTER: Creates a filtered table based on conditions, great for custom data slices.
4. RELATED: Pulls values from related tables, handy for cross-table analysis.
5. DATEADD: Shifts dates for time-based comparisons (like year-over-year analysis).
6. RANKX: Ranks items, super useful for leaderboards or top-N analysis.
7. ALL: Ignores filters to show totals or unfiltered values.
8. SWITCH: Like a nested IF, but cleaner for multiple conditions.
9. DIVIDE: Safely divides numbers, avoiding errors from dividing by zero.
10. FIRSTNONBLANK / LASTNONBLANK: Finds the first or last non-empty value in a column.
Mastering these DAX functions will make your Power BI dashboards way more insightful and dynamic!
React โค๏ธ for more
1. CALCULATE: Changes the filter context for calculations, making dynamic measures easy.
2. SUMX: Performs row-by-row calculations, perfect for things like multiplying quantity and price before summing.
3. FILTER: Creates a filtered table based on conditions, great for custom data slices.
4. RELATED: Pulls values from related tables, handy for cross-table analysis.
5. DATEADD: Shifts dates for time-based comparisons (like year-over-year analysis).
6. RANKX: Ranks items, super useful for leaderboards or top-N analysis.
7. ALL: Ignores filters to show totals or unfiltered values.
8. SWITCH: Like a nested IF, but cleaner for multiple conditions.
9. DIVIDE: Safely divides numbers, avoiding errors from dividing by zero.
10. FIRSTNONBLANK / LASTNONBLANK: Finds the first or last non-empty value in a column.
Mastering these DAX functions will make your Power BI dashboards way more insightful and dynamic!
React โค๏ธ for more
โค3๐1
Choosing the Right Chart Type
Selecting the appropriate chart can make or break your data storytelling. Here's a quick guide to help you choose the perfect visualization:
โณ ๐๐๐ซ ๐๐ก๐๐ซ๐ญ๐ฌ: Perfect for comparing quantities across categories (Think: regional sales comparison)
โณ ๐๐ข๐ง๐ ๐๐ก๐๐ซ๐ญ๐ฌ: Ideal for showing trends and changes over time (Example: monthly website traffic)
โณ ๐๐ข๐ ๐๐ก๐๐ซ๐ญ๐ฌ: Best for showing parts of a whole as percentages (Use case: market share breakdown)
โณ ๐๐ข๐ฌ๐ญ๐จ๐ ๐ซ๐๐ฆ๐ฌ: Great for showing the distribution of continuous data (Like salary ranges across your organization)
โณ ๐๐๐๐ญ๐ญ๐๐ซ ๐๐ฅ๐จ๐ญ๐ฌ: Essential for exploring relationships between variables (Perfect for marketing spend vs. sales analysis)
โณ ๐๐๐๐ญ ๐๐๐ฉ๐ฌ: Excellent for showing data density with color variation (Think: website traffic patterns by hour/day)
โณ ๐๐จ๐ฑ ๐๐ฅ๐จ๐ญ๐ฌ: Invaluable for displaying data variability and outliers (Great for analyzing performance metrics)
โณ ๐๐ซ๐๐ ๐๐ก๐๐ซ๐ญ๐ฌ: Shows cumulative totals over time (Example: sales growth across product lines)
โณ ๐๐ฎ๐๐๐ฅ๐ ๐๐ก๐๐ซ๐ญ๐ฌ: Powerful for displaying three dimensions of data (Combines size, position, and grouping)
๐๐ซ๐จ ๐๐ข๐ฉ: Always consider your audience and the story you want to tell when choosing your visualization type.
I have curated the best interview resources to crack Power BI Interviews ๐๐
https://whatsapp.com/channel/0029Vai1xKf1dAvuk6s1v22c
Hope you'll like it
Like this post if you need more resources like this ๐โค๏ธ
Selecting the appropriate chart can make or break your data storytelling. Here's a quick guide to help you choose the perfect visualization:
โณ ๐๐๐ซ ๐๐ก๐๐ซ๐ญ๐ฌ: Perfect for comparing quantities across categories (Think: regional sales comparison)
โณ ๐๐ข๐ง๐ ๐๐ก๐๐ซ๐ญ๐ฌ: Ideal for showing trends and changes over time (Example: monthly website traffic)
โณ ๐๐ข๐ ๐๐ก๐๐ซ๐ญ๐ฌ: Best for showing parts of a whole as percentages (Use case: market share breakdown)
โณ ๐๐ข๐ฌ๐ญ๐จ๐ ๐ซ๐๐ฆ๐ฌ: Great for showing the distribution of continuous data (Like salary ranges across your organization)
โณ ๐๐๐๐ญ๐ญ๐๐ซ ๐๐ฅ๐จ๐ญ๐ฌ: Essential for exploring relationships between variables (Perfect for marketing spend vs. sales analysis)
โณ ๐๐๐๐ญ ๐๐๐ฉ๐ฌ: Excellent for showing data density with color variation (Think: website traffic patterns by hour/day)
โณ ๐๐จ๐ฑ ๐๐ฅ๐จ๐ญ๐ฌ: Invaluable for displaying data variability and outliers (Great for analyzing performance metrics)
โณ ๐๐ซ๐๐ ๐๐ก๐๐ซ๐ญ๐ฌ: Shows cumulative totals over time (Example: sales growth across product lines)
โณ ๐๐ฎ๐๐๐ฅ๐ ๐๐ก๐๐ซ๐ญ๐ฌ: Powerful for displaying three dimensions of data (Combines size, position, and grouping)
๐๐ซ๐จ ๐๐ข๐ฉ: Always consider your audience and the story you want to tell when choosing your visualization type.
I have curated the best interview resources to crack Power BI Interviews ๐๐
https://whatsapp.com/channel/0029Vai1xKf1dAvuk6s1v22c
Hope you'll like it
Like this post if you need more resources like this ๐โค๏ธ
โค2
๐๐ข๐๐ซ๐จ๐ฌ๐จ๐๐ญ ๐
๐๐๐ ๐๐๐ซ๐ญ๐ข๐๐ข๐๐๐ญ๐ข๐จ๐ง ๐๐จ๐ฎ๐ซ๐ฌ๐๐ฌ!๐๐ป
Supercharge your career with 5 FREE Microsoft certification courses designed to boost your data analytics skills!
๐๐ง๐ซ๐จ๐ฅ๐ฅ ๐ ๐จ๐ซ ๐ ๐๐๐๐ :-
https://bit.ly/3Vlixcq
- Earn certifications to showcase your skills
Donโt waitโstart your journey to success today! โจ
Supercharge your career with 5 FREE Microsoft certification courses designed to boost your data analytics skills!
๐๐ง๐ซ๐จ๐ฅ๐ฅ ๐ ๐จ๐ซ ๐ ๐๐๐๐ :-
https://bit.ly/3Vlixcq
- Earn certifications to showcase your skills
Donโt waitโstart your journey to success today! โจ
โค1
Essential Topics to Master Data Analytics Interviews: ๐
SQL:
1. Foundations
- SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Navigate through simple databases and tables
2. Intermediate SQL
- Utilize Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Embrace Subqueries and nested queries
- Master Common Table Expressions (WITH clause)
- Implement CASE statements for logical queries
3. Advanced SQL
- Explore Advanced JOIN techniques (self-join, non-equi join)
- Dive into Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- Optimize queries with indexing
- Execute Data manipulation (INSERT, UPDATE, DELETE)
Python:
1. Python Basics
- Grasp Syntax, variables, and data types
- Command Control structures (if-else, for and while loops)
- Understand Basic data structures (lists, dictionaries, sets, tuples)
- Master Functions, lambda functions, and error handling (try-except)
- Explore Modules and packages
2. Pandas & Numpy
- Create and manipulate DataFrames and Series
- Perfect Indexing, selecting, and filtering data
- Handle missing data (fillna, dropna)
- Aggregate data with groupby, summarizing data
- Merge, join, and concatenate datasets
3. Data Visualization with Python
- Plot with Matplotlib (line plots, bar plots, histograms)
- Visualize with Seaborn (scatter plots, box plots, pair plots)
- Customize plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)
Excel:
1. Excel Essentials
- Conduct Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Dive into charts and basic data visualization
- Sort and filter data, use Conditional formatting
2. Intermediate Excel
- Master Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- Leverage PivotTables and PivotCharts for summarizing data
- Utilize data validation tools
- Employ What-if analysis tools (Data Tables, Goal Seek)
3. Advanced Excel
- Harness Array formulas and advanced functions
- Dive into Data Model & Power Pivot
- Explore Advanced Filter, Slicers, and Timelines in Pivot Tables
- Create dynamic charts and interactive dashboards
Power BI:
1. Data Modeling in Power BI
- Import data from various sources
- Establish and manage relationships between datasets
- Grasp Data modeling basics (star schema, snowflake schema)
2. Data Transformation in Power BI
- Use Power Query for data cleaning and transformation
- Apply advanced data shaping techniques
- Create Calculated columns and measures using DAX
3. Data Visualization and Reporting in Power BI
- Craft interactive reports and dashboards
- Utilize Visualizations (bar, line, pie charts, maps)
- Publish and share reports, schedule data refreshes
Statistics Fundamentals:
- Mean, Median, Mode
- Standard Deviation, Variance
- Probability Distributions, Hypothesis Testing
- P-values, Confidence Intervals
- Correlation, Simple Linear Regression
- Normal Distribution, Binomial Distribution, Poisson Distribution.
Show some โค๏ธ if you're ready to elevate your data analytics journey! ๐
ENJOY LEARNING ๐๐
SQL:
1. Foundations
- SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Navigate through simple databases and tables
2. Intermediate SQL
- Utilize Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Embrace Subqueries and nested queries
- Master Common Table Expressions (WITH clause)
- Implement CASE statements for logical queries
3. Advanced SQL
- Explore Advanced JOIN techniques (self-join, non-equi join)
- Dive into Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- Optimize queries with indexing
- Execute Data manipulation (INSERT, UPDATE, DELETE)
Python:
1. Python Basics
- Grasp Syntax, variables, and data types
- Command Control structures (if-else, for and while loops)
- Understand Basic data structures (lists, dictionaries, sets, tuples)
- Master Functions, lambda functions, and error handling (try-except)
- Explore Modules and packages
2. Pandas & Numpy
- Create and manipulate DataFrames and Series
- Perfect Indexing, selecting, and filtering data
- Handle missing data (fillna, dropna)
- Aggregate data with groupby, summarizing data
- Merge, join, and concatenate datasets
3. Data Visualization with Python
- Plot with Matplotlib (line plots, bar plots, histograms)
- Visualize with Seaborn (scatter plots, box plots, pair plots)
- Customize plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)
Excel:
1. Excel Essentials
- Conduct Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Dive into charts and basic data visualization
- Sort and filter data, use Conditional formatting
2. Intermediate Excel
- Master Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- Leverage PivotTables and PivotCharts for summarizing data
- Utilize data validation tools
- Employ What-if analysis tools (Data Tables, Goal Seek)
3. Advanced Excel
- Harness Array formulas and advanced functions
- Dive into Data Model & Power Pivot
- Explore Advanced Filter, Slicers, and Timelines in Pivot Tables
- Create dynamic charts and interactive dashboards
Power BI:
1. Data Modeling in Power BI
- Import data from various sources
- Establish and manage relationships between datasets
- Grasp Data modeling basics (star schema, snowflake schema)
2. Data Transformation in Power BI
- Use Power Query for data cleaning and transformation
- Apply advanced data shaping techniques
- Create Calculated columns and measures using DAX
3. Data Visualization and Reporting in Power BI
- Craft interactive reports and dashboards
- Utilize Visualizations (bar, line, pie charts, maps)
- Publish and share reports, schedule data refreshes
Statistics Fundamentals:
- Mean, Median, Mode
- Standard Deviation, Variance
- Probability Distributions, Hypothesis Testing
- P-values, Confidence Intervals
- Correlation, Simple Linear Regression
- Normal Distribution, Binomial Distribution, Poisson Distribution.
Show some โค๏ธ if you're ready to elevate your data analytics journey! ๐
ENJOY LEARNING ๐๐
โค2
๐ง Technologies for Data Analysts!
๐ Data Manipulation & Analysis
โช๏ธ Excel โ Spreadsheet Data Analysis & Visualization
โช๏ธ SQL โ Structured Query Language for Data Extraction
โช๏ธ Pandas (Python) โ Data Analysis with DataFrames
โช๏ธ NumPy (Python) โ Numerical Computing for Large Datasets
โช๏ธ Google Sheets โ Online Collaboration for Data Analysis
๐ Data Visualization
โช๏ธ Power BI โ Business Intelligence & Dashboarding
โช๏ธ Tableau โ Interactive Data Visualization
โช๏ธ Matplotlib (Python) โ Plotting Graphs & Charts
โช๏ธ Seaborn (Python) โ Statistical Data Visualization
โช๏ธ Google Data Studio โ Free, Web-Based Visualization Tool
๐ ETL (Extract, Transform, Load)
โช๏ธ SQL Server Integration Services (SSIS) โ Data Integration & ETL
โช๏ธ Apache NiFi โ Automating Data Flows
โช๏ธ Talend โ Data Integration for Cloud & On-premises
๐งน Data Cleaning & Preparation
โช๏ธ OpenRefine โ Clean & Transform Messy Data
โช๏ธ Pandas Profiling (Python) โ Data Profiling & Preprocessing
โช๏ธ DataWrangler โ Data Transformation Tool
๐ฆ Data Storage & Databases
โช๏ธ SQL โ Relational Databases (MySQL, PostgreSQL, MS SQL)
โช๏ธ NoSQL (MongoDB) โ Flexible, Schema-less Data Storage
โช๏ธ Google BigQuery โ Scalable Cloud Data Warehousing
โช๏ธ Redshift โ Amazonโs Cloud Data Warehouse
โ๏ธ Data Automation
โช๏ธ Alteryx โ Data Blending & Advanced Analytics
โช๏ธ Knime โ Data Analytics & Reporting Automation
โช๏ธ Zapier โ Connect & Automate Data Workflows
๐ Advanced Analytics & Statistical Tools
โช๏ธ R โ Statistical Computing & Analysis
โช๏ธ Python (SciPy, Statsmodels) โ Statistical Modeling & Hypothesis Testing
โช๏ธ SPSS โ Statistical Software for Data Analysis
โช๏ธ SAS โ Advanced Analytics & Predictive Modeling
๐ Collaboration & Reporting
โช๏ธ Power BI Service โ Online Sharing & Collaboration for Dashboards
โช๏ธ Tableau Online โ Cloud-Based Visualization & Sharing
โช๏ธ Google Analytics โ Web Traffic Data Insights
โช๏ธ Trello / JIRA โ Project & Task Management for Data Projects
Data-Driven Decisions with the Right Tools!
React โค๏ธ for more
๐ Data Manipulation & Analysis
โช๏ธ Excel โ Spreadsheet Data Analysis & Visualization
โช๏ธ SQL โ Structured Query Language for Data Extraction
โช๏ธ Pandas (Python) โ Data Analysis with DataFrames
โช๏ธ NumPy (Python) โ Numerical Computing for Large Datasets
โช๏ธ Google Sheets โ Online Collaboration for Data Analysis
๐ Data Visualization
โช๏ธ Power BI โ Business Intelligence & Dashboarding
โช๏ธ Tableau โ Interactive Data Visualization
โช๏ธ Matplotlib (Python) โ Plotting Graphs & Charts
โช๏ธ Seaborn (Python) โ Statistical Data Visualization
โช๏ธ Google Data Studio โ Free, Web-Based Visualization Tool
๐ ETL (Extract, Transform, Load)
โช๏ธ SQL Server Integration Services (SSIS) โ Data Integration & ETL
โช๏ธ Apache NiFi โ Automating Data Flows
โช๏ธ Talend โ Data Integration for Cloud & On-premises
๐งน Data Cleaning & Preparation
โช๏ธ OpenRefine โ Clean & Transform Messy Data
โช๏ธ Pandas Profiling (Python) โ Data Profiling & Preprocessing
โช๏ธ DataWrangler โ Data Transformation Tool
๐ฆ Data Storage & Databases
โช๏ธ SQL โ Relational Databases (MySQL, PostgreSQL, MS SQL)
โช๏ธ NoSQL (MongoDB) โ Flexible, Schema-less Data Storage
โช๏ธ Google BigQuery โ Scalable Cloud Data Warehousing
โช๏ธ Redshift โ Amazonโs Cloud Data Warehouse
โ๏ธ Data Automation
โช๏ธ Alteryx โ Data Blending & Advanced Analytics
โช๏ธ Knime โ Data Analytics & Reporting Automation
โช๏ธ Zapier โ Connect & Automate Data Workflows
๐ Advanced Analytics & Statistical Tools
โช๏ธ R โ Statistical Computing & Analysis
โช๏ธ Python (SciPy, Statsmodels) โ Statistical Modeling & Hypothesis Testing
โช๏ธ SPSS โ Statistical Software for Data Analysis
โช๏ธ SAS โ Advanced Analytics & Predictive Modeling
๐ Collaboration & Reporting
โช๏ธ Power BI Service โ Online Sharing & Collaboration for Dashboards
โช๏ธ Tableau Online โ Cloud-Based Visualization & Sharing
โช๏ธ Google Analytics โ Web Traffic Data Insights
โช๏ธ Trello / JIRA โ Project & Task Management for Data Projects
Data-Driven Decisions with the Right Tools!
React โค๏ธ for more
โค4
10 SQL Concepts Every Data Analyst Should Master ๐
โ SELECT, WHERE, ORDER BY โ Core of querying your data
โ JOINs (INNER, LEFT, RIGHT, FULL) โ Combine data from multiple tables
โ GROUP BY & HAVING โ Aggregate and filter grouped data
โ Subqueries โ Nest queries inside queries for complex logic
โ CTEs (Common Table Expressions) โ Write cleaner, reusable SQL logic
โ Window Functions โ Perform advanced analytics like rankings & running totals
โ Indexes โ Boost your query performance
โ Normalization โ Structure your database efficiently
โ UNION vs UNION ALL โ Combine result sets with or without duplicates
โ Stored Procedures & Functions โ Reusable logic inside your DB
React with โค๏ธ if you want me to cover each topic in detail
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
โ SELECT, WHERE, ORDER BY โ Core of querying your data
โ JOINs (INNER, LEFT, RIGHT, FULL) โ Combine data from multiple tables
โ GROUP BY & HAVING โ Aggregate and filter grouped data
โ Subqueries โ Nest queries inside queries for complex logic
โ CTEs (Common Table Expressions) โ Write cleaner, reusable SQL logic
โ Window Functions โ Perform advanced analytics like rankings & running totals
โ Indexes โ Boost your query performance
โ Normalization โ Structure your database efficiently
โ UNION vs UNION ALL โ Combine result sets with or without duplicates
โ Stored Procedures & Functions โ Reusable logic inside your DB
React with โค๏ธ if you want me to cover each topic in detail
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
โค5
๐ Real-World Data Analyst Tasks & How to Solve Them
As a Data Analyst, your job isnโt just about writing SQL queries or making dashboardsโitโs about solving business problems using data. Letโs explore some common real-world tasks and how you can handle them like a pro!
๐ Task 1: Cleaning Messy Data
Before analyzing data, you need to remove duplicates, handle missing values, and standardize formats.
โ Solution (Using Pandas in Python):
๐ก Tip: Always check for inconsistent spellings and incorrect date formats!
๐ Task 2: Analyzing Sales Trends
A company wants to know which months have the highest sales.
โ Solution (Using SQL):
๐ก Tip: Try adding YEAR(SaleDate) to compare yearly trends!
๐ Task 3: Creating a Business Dashboard
Your manager asks you to create a dashboard showing revenue by region, top-selling products, and monthly growth.
โ Solution (Using Power BI / Tableau):
๐ Add KPI Cards to show total sales & profit
๐ Use a Line Chart for monthly trends
๐ Create a Bar Chart for top-selling products
๐ Use Filters/Slicers for better interactivity
๐ก Tip: Keep your dashboards clean, interactive, and easy to interpret!
Like this post for more content like this โฅ๏ธ
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
As a Data Analyst, your job isnโt just about writing SQL queries or making dashboardsโitโs about solving business problems using data. Letโs explore some common real-world tasks and how you can handle them like a pro!
๐ Task 1: Cleaning Messy Data
Before analyzing data, you need to remove duplicates, handle missing values, and standardize formats.
โ Solution (Using Pandas in Python):
import pandas as pd
df = pd.read_csv('sales_data.csv')
df.drop_duplicates(inplace=True) # Remove duplicate rows
df.fillna(0, inplace=True) # Fill missing values with 0
print(df.head())
๐ก Tip: Always check for inconsistent spellings and incorrect date formats!
๐ Task 2: Analyzing Sales Trends
A company wants to know which months have the highest sales.
โ Solution (Using SQL):
SELECT MONTH(SaleDate) AS Month, SUM(Quantity * Price) AS Total_Revenue
FROM Sales
GROUP BY MONTH(SaleDate)
ORDER BY Total_Revenue DESC;
๐ก Tip: Try adding YEAR(SaleDate) to compare yearly trends!
๐ Task 3: Creating a Business Dashboard
Your manager asks you to create a dashboard showing revenue by region, top-selling products, and monthly growth.
โ Solution (Using Power BI / Tableau):
๐ Add KPI Cards to show total sales & profit
๐ Use a Line Chart for monthly trends
๐ Create a Bar Chart for top-selling products
๐ Use Filters/Slicers for better interactivity
๐ก Tip: Keep your dashboards clean, interactive, and easy to interpret!
Like this post for more content like this โฅ๏ธ
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
โค3
๐๐ฐ๐ฒ ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐ ๐๐ถ๐๐ต ๐ง๐ต๐ฒ๐๐ฒ ๐ ๐๐๐-๐๐ป๐ผ๐ ๐ค๐๐ฒ๐๐๐ถ๐ผ๐ป๐! ๐ฅ
Are you preparing for a ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐? Hiring managers donโt just want to hear your answersโthey want to know if you truly understand data.
Here are ๐ญ๐ฌ ๐ณ๐ฟ๐ฒ๐พ๐๐ฒ๐ป๐๐น๐ ๐ฎ๐๐ธ๐ฒ๐ฑ ๐พ๐๐ฒ๐๐๐ถ๐ผ๐ป๐ (and what they really mean):
๐ "๐ง๐ฒ๐น๐น ๐บ๐ฒ ๐ฎ๐ฏ๐ผ๐๐ ๐๐ผ๐๐ฟ๐๐ฒ๐น๐ณ."
๐ What theyโre really asking: Are you relevant for this role?
โ Keep it conciseโhighlight your experience, tools (SQL, Power BI, etc.), and a key impact you made.
๐ "๐๐ผ๐ ๐ฑ๐ผ ๐๐ผ๐ ๐ต๐ฎ๐ป๐ฑ๐น๐ฒ ๐บ๐ฒ๐๐๐ ๐ฑ๐ฎ๐๐ฎ?"
๐ What theyโre really asking: Do you panic when you see missing values?
โ Show your structured approachโidentify issues, clean with Pandas/SQL, and document your process.
๐ "๐๐ผ๐ ๐ฑ๐ผ ๐๐ผ๐ ๐ฎ๐ฝ๐ฝ๐ฟ๐ผ๐ฎ๐ฐ๐ต ๐ฎ ๐ฑ๐ฎ๐๐ฎ ๐ฎ๐ป๐ฎ๐น๐๐๐ถ๐ ๐ฝ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐?"
๐ What theyโre really asking: Do you have a methodology, or do you just wing it?
โ Use a structured approach: Define business needs โ Clean & explore data โ Generate insights โ Present effectively.
๐ "๐๐ฎ๐ป ๐๐ผ๐ ๐ฒ๐ ๐ฝ๐น๐ฎ๐ถ๐ป ๐ฎ ๐ฐ๐ผ๐บ๐ฝ๐น๐ฒ๐ ๐ฐ๐ผ๐ป๐ฐ๐ฒ๐ฝ๐ ๐๐ผ ๐ฎ ๐ป๐ผ๐ป-๐๐ฒ๐ฐ๐ต๐ป๐ถ๐ฐ๐ฎ๐น
๐๐๐ฎ๐ธ๐ฒ๐ต๐ผ๐น๐ฑ๐ฒ๐ฟ?"
๐ What theyโre really asking: Can you simplify data without oversimplifying?
โ Use storytellingโfocus on actionable insights rather than jargon.
๐ "๐ง๐ฒ๐น๐น ๐บ๐ฒ ๐ฎ๐ฏ๐ผ๐๐ ๐ฎ ๐๐ถ๐บ๐ฒ ๐๐ผ๐ ๐บ๐ฎ๐ฑ๐ฒ ๐ฎ ๐บ๐ถ๐๐๐ฎ๐ธ๐ฒ."
๐ What theyโre really asking: Can you learn from failure?
โ Own your mistake, explain how you fixed it, and share what you do differently now.
๐ก ๐ฃ๐ฟ๐ผ ๐ง๐ถ๐ฝ: The best candidates donโt just answer questionsโthey tell stories that demonstrate problem-solving, clarity, and impact.
๐ Save this for later & share with someone preparing for interviews!
Are you preparing for a ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐? Hiring managers donโt just want to hear your answersโthey want to know if you truly understand data.
Here are ๐ญ๐ฌ ๐ณ๐ฟ๐ฒ๐พ๐๐ฒ๐ป๐๐น๐ ๐ฎ๐๐ธ๐ฒ๐ฑ ๐พ๐๐ฒ๐๐๐ถ๐ผ๐ป๐ (and what they really mean):
๐ "๐ง๐ฒ๐น๐น ๐บ๐ฒ ๐ฎ๐ฏ๐ผ๐๐ ๐๐ผ๐๐ฟ๐๐ฒ๐น๐ณ."
๐ What theyโre really asking: Are you relevant for this role?
โ Keep it conciseโhighlight your experience, tools (SQL, Power BI, etc.), and a key impact you made.
๐ "๐๐ผ๐ ๐ฑ๐ผ ๐๐ผ๐ ๐ต๐ฎ๐ป๐ฑ๐น๐ฒ ๐บ๐ฒ๐๐๐ ๐ฑ๐ฎ๐๐ฎ?"
๐ What theyโre really asking: Do you panic when you see missing values?
โ Show your structured approachโidentify issues, clean with Pandas/SQL, and document your process.
๐ "๐๐ผ๐ ๐ฑ๐ผ ๐๐ผ๐ ๐ฎ๐ฝ๐ฝ๐ฟ๐ผ๐ฎ๐ฐ๐ต ๐ฎ ๐ฑ๐ฎ๐๐ฎ ๐ฎ๐ป๐ฎ๐น๐๐๐ถ๐ ๐ฝ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐?"
๐ What theyโre really asking: Do you have a methodology, or do you just wing it?
โ Use a structured approach: Define business needs โ Clean & explore data โ Generate insights โ Present effectively.
๐ "๐๐ฎ๐ป ๐๐ผ๐ ๐ฒ๐ ๐ฝ๐น๐ฎ๐ถ๐ป ๐ฎ ๐ฐ๐ผ๐บ๐ฝ๐น๐ฒ๐ ๐ฐ๐ผ๐ป๐ฐ๐ฒ๐ฝ๐ ๐๐ผ ๐ฎ ๐ป๐ผ๐ป-๐๐ฒ๐ฐ๐ต๐ป๐ถ๐ฐ๐ฎ๐น
๐๐๐ฎ๐ธ๐ฒ๐ต๐ผ๐น๐ฑ๐ฒ๐ฟ?"
๐ What theyโre really asking: Can you simplify data without oversimplifying?
โ Use storytellingโfocus on actionable insights rather than jargon.
๐ "๐ง๐ฒ๐น๐น ๐บ๐ฒ ๐ฎ๐ฏ๐ผ๐๐ ๐ฎ ๐๐ถ๐บ๐ฒ ๐๐ผ๐ ๐บ๐ฎ๐ฑ๐ฒ ๐ฎ ๐บ๐ถ๐๐๐ฎ๐ธ๐ฒ."
๐ What theyโre really asking: Can you learn from failure?
โ Own your mistake, explain how you fixed it, and share what you do differently now.
๐ก ๐ฃ๐ฟ๐ผ ๐ง๐ถ๐ฝ: The best candidates donโt just answer questionsโthey tell stories that demonstrate problem-solving, clarity, and impact.
๐ Save this for later & share with someone preparing for interviews!
โค3
10 Tools for SQL Developers ๐ ๐ -
๐ SQL Server Management Studio (SSMS) - Manage and query SQL Server databases
๐ phpMyAdmin - Web-based tool for MySQL database management
๐ DBeaver - Universal database management tool
๐ Tableau - Data visualization and BI tool
โ๏ธ SQL Workbench/J - Cross-platform SQL query tool
๐ pgAdmin - Management tool for PostgreSQL
๐ Azure Data Studio - Lightweight and extensible data tool
๐ฆ Toad for SQL - Database development and administration
๐ Datagrip - JetBrains SQL IDE for various databases
๐ HeidiSQL - Lightweight MySQL and MSSQL client
Join for more: https://t.iss.one/sqlanalyst
๐ SQL Server Management Studio (SSMS) - Manage and query SQL Server databases
๐ phpMyAdmin - Web-based tool for MySQL database management
๐ DBeaver - Universal database management tool
๐ Tableau - Data visualization and BI tool
โ๏ธ SQL Workbench/J - Cross-platform SQL query tool
๐ pgAdmin - Management tool for PostgreSQL
๐ Azure Data Studio - Lightweight and extensible data tool
๐ฆ Toad for SQL - Database development and administration
๐ Datagrip - JetBrains SQL IDE for various databases
๐ HeidiSQL - Lightweight MySQL and MSSQL client
Join for more: https://t.iss.one/sqlanalyst
โค2
๐ Best Data Analytics Roles Based on Your Graduation Background!
๐ For Mathematics/Statistics Graduates:
๐น Data Analyst
๐น Statistical Analyst
๐น Quantitative Analyst
๐น Risk Analyst
๐ For Computer Science/IT Graduates:
๐น Data Scientist
๐น Business Intelligence Developer
๐น Data Engineer
๐น Data Architect
๐ For Economics/Finance Graduates:
๐น Financial Analyst
๐น Market Research Analyst
๐น Economic Consultant
๐น Data Journalist
๐ For Business/Management Graduates:
๐น Business Analyst
๐น Operations Research Analyst
๐น Marketing Analytics Manager
๐น Supply Chain Analyst
๐ For Engineering Graduates:
๐น Data Scientist
๐น Industrial Engineer
๐น Operations Research Analyst
๐น Quality Engineer
๐ For Social Science Graduates:
๐น Data Analyst
๐น Research Assistant
๐น Social Media Analyst
๐น Public Health Analyst
๐ For Biology/Healthcare Graduates:
๐น Clinical Data Analyst
๐น Biostatistician
๐น Research Coordinator
๐น Healthcare Consultant
Some of these roles may require additional certifications or upskilling in SQL, Python, Power BI, Tableau, or Machine Learning to stand out in the job market.
Like if it helps โค๏ธ
๐ For Mathematics/Statistics Graduates:
๐น Data Analyst
๐น Statistical Analyst
๐น Quantitative Analyst
๐น Risk Analyst
๐ For Computer Science/IT Graduates:
๐น Data Scientist
๐น Business Intelligence Developer
๐น Data Engineer
๐น Data Architect
๐ For Economics/Finance Graduates:
๐น Financial Analyst
๐น Market Research Analyst
๐น Economic Consultant
๐น Data Journalist
๐ For Business/Management Graduates:
๐น Business Analyst
๐น Operations Research Analyst
๐น Marketing Analytics Manager
๐น Supply Chain Analyst
๐ For Engineering Graduates:
๐น Data Scientist
๐น Industrial Engineer
๐น Operations Research Analyst
๐น Quality Engineer
๐ For Social Science Graduates:
๐น Data Analyst
๐น Research Assistant
๐น Social Media Analyst
๐น Public Health Analyst
๐ For Biology/Healthcare Graduates:
๐น Clinical Data Analyst
๐น Biostatistician
๐น Research Coordinator
๐น Healthcare Consultant
Some of these roles may require additional certifications or upskilling in SQL, Python, Power BI, Tableau, or Machine Learning to stand out in the job market.
Like if it helps โค๏ธ
โค3
Essential Data Analysis Techniques Every Analyst Should Know
1. Descriptive Statistics: Understanding measures of central tendency (mean, median, mode) and measures of spread (variance, standard deviation) to summarize data.
2. Data Cleaning: Techniques to handle missing values, outliers, and inconsistencies in data, ensuring that the data is accurate and reliable for analysis.
3. Exploratory Data Analysis (EDA): Using visualization tools like histograms, scatter plots, and box plots to uncover patterns, trends, and relationships in the data.
4. Hypothesis Testing: The process of making inferences about a population based on sample data, including understanding p-values, confidence intervals, and statistical significance.
5. Correlation and Regression Analysis: Techniques to measure the strength of relationships between variables and predict future outcomes based on existing data.
6. Time Series Analysis: Analyzing data collected over time to identify trends, seasonality, and cyclical patterns for forecasting purposes.
7. Clustering: Grouping similar data points together based on characteristics, useful in customer segmentation and market analysis.
8. Dimensionality Reduction: Techniques like PCA (Principal Component Analysis) to reduce the number of variables in a dataset while preserving as much information as possible.
9. ANOVA (Analysis of Variance): A statistical method used to compare the means of three or more samples, determining if at least one mean is different.
10. Machine Learning Integration: Applying machine learning algorithms to enhance data analysis, enabling predictions, and automation of tasks.
Like this post if you need more ๐โค๏ธ
Hope it helps :)
1. Descriptive Statistics: Understanding measures of central tendency (mean, median, mode) and measures of spread (variance, standard deviation) to summarize data.
2. Data Cleaning: Techniques to handle missing values, outliers, and inconsistencies in data, ensuring that the data is accurate and reliable for analysis.
3. Exploratory Data Analysis (EDA): Using visualization tools like histograms, scatter plots, and box plots to uncover patterns, trends, and relationships in the data.
4. Hypothesis Testing: The process of making inferences about a population based on sample data, including understanding p-values, confidence intervals, and statistical significance.
5. Correlation and Regression Analysis: Techniques to measure the strength of relationships between variables and predict future outcomes based on existing data.
6. Time Series Analysis: Analyzing data collected over time to identify trends, seasonality, and cyclical patterns for forecasting purposes.
7. Clustering: Grouping similar data points together based on characteristics, useful in customer segmentation and market analysis.
8. Dimensionality Reduction: Techniques like PCA (Principal Component Analysis) to reduce the number of variables in a dataset while preserving as much information as possible.
9. ANOVA (Analysis of Variance): A statistical method used to compare the means of three or more samples, determining if at least one mean is different.
10. Machine Learning Integration: Applying machine learning algorithms to enhance data analysis, enabling predictions, and automation of tasks.
Like this post if you need more ๐โค๏ธ
Hope it helps :)
โค2
๐๐จ๐ฐ ๐ญ๐จ ๐๐ซ๐๐ฉ๐๐ซ๐ ๐ญ๐จ ๐๐๐๐จ๐ฆ๐ ๐ ๐๐๐ญ๐ ๐๐ง๐๐ฅ๐ฒ๐ฌ๐ญ
๐. ๐๐ฑ๐๐๐ฅ- Learn formulas, Pivot tables, Lookup, VBA Macros.
๐. ๐๐๐- Joins, Windows, CTE is the most important
๐. ๐๐จ๐ฐ๐๐ซ ๐๐- Power Query Editor(PQE), DAX, MCode, RLS
๐. ๐๐ฒ๐ญ๐ก๐จ๐ง- Basics & Libraries(mainly pandas, numpy, matplotlib and seaborn libraries)
5. Practice SQL and Python questions on platforms like ๐๐๐๐ค๐๐ซ๐๐๐ง๐ค or ๐๐๐๐๐ก๐จ๐จ๐ฅ๐ฌ.
6. Know the basics of descriptive statistics(mean, median, mode, Probability, normal, binomial, Poisson distributions etc).
7. Learn to use ๐๐/๐๐จ๐ฉ๐ข๐ฅ๐จ๐ญ ๐ญ๐จ๐จ๐ฅ๐ฌ like GitHub Copilot or Power BI's AI features to automate tasks, generate insights, and improve your projects(Most demanding in Companies now)
8. Get hands-on experience with one cloud platform: ๐๐ณ๐ฎ๐ซ๐, ๐๐๐, ๐จ๐ซ ๐๐๐
9. Work on at least two end-to-end projects.
10. Prepare an ATS-friendly resume and start applying for jobs.
11. Prepare for interviews by going through common interview questions on Google and YouTube.
I have curated best 80+ top-notch Data Analytics Resources ๐๐
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Hope this helps you ๐
๐. ๐๐ฑ๐๐๐ฅ- Learn formulas, Pivot tables, Lookup, VBA Macros.
๐. ๐๐๐- Joins, Windows, CTE is the most important
๐. ๐๐จ๐ฐ๐๐ซ ๐๐- Power Query Editor(PQE), DAX, MCode, RLS
๐. ๐๐ฒ๐ญ๐ก๐จ๐ง- Basics & Libraries(mainly pandas, numpy, matplotlib and seaborn libraries)
5. Practice SQL and Python questions on platforms like ๐๐๐๐ค๐๐ซ๐๐๐ง๐ค or ๐๐๐๐๐ก๐จ๐จ๐ฅ๐ฌ.
6. Know the basics of descriptive statistics(mean, median, mode, Probability, normal, binomial, Poisson distributions etc).
7. Learn to use ๐๐/๐๐จ๐ฉ๐ข๐ฅ๐จ๐ญ ๐ญ๐จ๐จ๐ฅ๐ฌ like GitHub Copilot or Power BI's AI features to automate tasks, generate insights, and improve your projects(Most demanding in Companies now)
8. Get hands-on experience with one cloud platform: ๐๐ณ๐ฎ๐ซ๐, ๐๐๐, ๐จ๐ซ ๐๐๐
9. Work on at least two end-to-end projects.
10. Prepare an ATS-friendly resume and start applying for jobs.
11. Prepare for interviews by going through common interview questions on Google and YouTube.
I have curated best 80+ top-notch Data Analytics Resources ๐๐
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02
Hope this helps you ๐
โค5
๐ Real-World Data Analyst Tasks & How to Solve Them
As a Data Analyst, your job isnโt just about writing SQL queries or making dashboardsโitโs about solving business problems using data. Letโs explore some common real-world tasks and how you can handle them like a pro!
๐ Task 1: Cleaning Messy Data
Before analyzing data, you need to remove duplicates, handle missing values, and standardize formats.
โ Solution (Using Pandas in Python):
๐ก Tip: Always check for inconsistent spellings and incorrect date formats!
๐ Task 2: Analyzing Sales Trends
A company wants to know which months have the highest sales.
โ Solution (Using SQL):
๐ก Tip: Try adding YEAR(SaleDate) to compare yearly trends!
๐ Task 3: Creating a Business Dashboard
Your manager asks you to create a dashboard showing revenue by region, top-selling products, and monthly growth.
โ Solution (Using Power BI / Tableau):
๐ Add KPI Cards to show total sales & profit
๐ Use a Line Chart for monthly trends
๐ Create a Bar Chart for top-selling products
๐ Use Filters/Slicers for better interactivity
๐ก Tip: Keep your dashboards clean, interactive, and easy to interpret!
Like this post for more content like this โฅ๏ธ
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
As a Data Analyst, your job isnโt just about writing SQL queries or making dashboardsโitโs about solving business problems using data. Letโs explore some common real-world tasks and how you can handle them like a pro!
๐ Task 1: Cleaning Messy Data
Before analyzing data, you need to remove duplicates, handle missing values, and standardize formats.
โ Solution (Using Pandas in Python):
import pandas as pd
df = pd.read_csv('sales_data.csv')
df.drop_duplicates(inplace=True) # Remove duplicate rows
df.fillna(0, inplace=True) # Fill missing values with 0
print(df.head())
๐ก Tip: Always check for inconsistent spellings and incorrect date formats!
๐ Task 2: Analyzing Sales Trends
A company wants to know which months have the highest sales.
โ Solution (Using SQL):
SELECT MONTH(SaleDate) AS Month, SUM(Quantity * Price) AS Total_Revenue
FROM Sales
GROUP BY MONTH(SaleDate)
ORDER BY Total_Revenue DESC;
๐ก Tip: Try adding YEAR(SaleDate) to compare yearly trends!
๐ Task 3: Creating a Business Dashboard
Your manager asks you to create a dashboard showing revenue by region, top-selling products, and monthly growth.
โ Solution (Using Power BI / Tableau):
๐ Add KPI Cards to show total sales & profit
๐ Use a Line Chart for monthly trends
๐ Create a Bar Chart for top-selling products
๐ Use Filters/Slicers for better interactivity
๐ก Tip: Keep your dashboards clean, interactive, and easy to interpret!
Like this post for more content like this โฅ๏ธ
Share with credits: https://t.iss.one/sqlspecialist
Hope it helps :)
โค1