β¨οΈ 5 JavaScript tools for Optimizing SEO performance
Libraries can enhance your website's SEO friendliness but content quality and user experience are still crucial for ranking high in search results.
β€1π1
Essential Math for AI.pdf
18.1 MB
Essential Math for AI
Hala Nelson, 2022
Hala Nelson, 2022
Natural Language Processing with Transformers.pdf
6.4 MB
Natural Language Processing with Transformers
Lewis Tunstall, 2022
Lewis Tunstall, 2022
Cracking Codes with Python.pdf
7.6 MB
Cracking Codes with Python
Al Sweigart, 2018
Al Sweigart, 2018
hands-on-data-science.pdf
15.3 MB
Hands-On Data Science and Python Machine Learning
Frank Kane, 2017
Frank Kane, 2017
π4β€1
π ππΆπ½π π³πΌπΏ π»π²π π°πΌπ±π²πΏπ: π
1. Learn Fundamentals: Use W3Schools, FreeCodeCamp, or MDN for solid basics.
2. Watch and Code Along: Follow YouTube tutorials to code in real-time.
3. Practice Regularly: Build small projects to sharpen your skills.
4. Join Coding Communities: Engage on platforms like X, Discord, and Reddit for support.
5. Use AI Tools Wisely: Leverage tools like ChatGPT responsibly to aid learning.
6. Master Git and Version Control: Learn to manage your code effectively.
7. Stay Updated: Follow tech blogs, newsletters, and podcasts.
8. Network: Attend meetups, hackathons, and online coding events.
9. Explore Open Source: Contribute to projects to gain experience.
10.Never Stop Learning: Technology evolvesβkeep exploring new languages and frameworks.
1. Learn Fundamentals: Use W3Schools, FreeCodeCamp, or MDN for solid basics.
2. Watch and Code Along: Follow YouTube tutorials to code in real-time.
3. Practice Regularly: Build small projects to sharpen your skills.
4. Join Coding Communities: Engage on platforms like X, Discord, and Reddit for support.
5. Use AI Tools Wisely: Leverage tools like ChatGPT responsibly to aid learning.
6. Master Git and Version Control: Learn to manage your code effectively.
7. Stay Updated: Follow tech blogs, newsletters, and podcasts.
8. Network: Attend meetups, hackathons, and online coding events.
9. Explore Open Source: Contribute to projects to gain experience.
10.Never Stop Learning: Technology evolvesβkeep exploring new languages and frameworks.
π1
How long are coding interviews?
The phone screen portion of the coding interview typically lasts up to one hour. The second, more technical part of the interview can take multiple hours.
Where can I practice coding?
There are many ways to practice coding and prepare for your coding interview. LeetCode provides practice opportunities in more than 14 languages and more than 1,500 sample problems. Applicants can also practice their coding skills and interview prep with HackerRank.
How do I know if my coding interview went well?
There are a variety of indicators that your coding interview went well. These may include going over the allotted time, being introduced to additional team members, and receiving a quick response to your thank you email.
The phone screen portion of the coding interview typically lasts up to one hour. The second, more technical part of the interview can take multiple hours.
Where can I practice coding?
There are many ways to practice coding and prepare for your coding interview. LeetCode provides practice opportunities in more than 14 languages and more than 1,500 sample problems. Applicants can also practice their coding skills and interview prep with HackerRank.
How do I know if my coding interview went well?
There are a variety of indicators that your coding interview went well. These may include going over the allotted time, being introduced to additional team members, and receiving a quick response to your thank you email.
π1
Top 5 data science projects for freshers
1. Predictive Analytics on a Dataset:
- Use a dataset to predict future trends or outcomes using machine learning algorithms. This could involve predicting sales, stock prices, or any other relevant domain.
2. Customer Segmentation:
- Analyze and segment customers based on their behavior, preferences, or demographics. This project could provide insights for targeted marketing strategies.
3. Sentiment Analysis on Social Media Data:
- Analyze sentiment in social media data to understand public opinion on a particular topic. This project helps in mastering natural language processing (NLP) techniques.
4. Recommendation System:
- Build a recommendation system, perhaps for movies, music, or products, using collaborative filtering or content-based filtering methods.
5. Fraud Detection:
- Develop a fraud detection system using machine learning algorithms to identify anomalous patterns in financial transactions or any domain where fraud detection is crucial.
Free Datsets -> https://t.iss.one/DataPortfolio/2?single
These projects showcase practical application of data science skills and can be highlighted on a resume for entry-level positions.
Join @pythonspecialist for more data science projects
1. Predictive Analytics on a Dataset:
- Use a dataset to predict future trends or outcomes using machine learning algorithms. This could involve predicting sales, stock prices, or any other relevant domain.
2. Customer Segmentation:
- Analyze and segment customers based on their behavior, preferences, or demographics. This project could provide insights for targeted marketing strategies.
3. Sentiment Analysis on Social Media Data:
- Analyze sentiment in social media data to understand public opinion on a particular topic. This project helps in mastering natural language processing (NLP) techniques.
4. Recommendation System:
- Build a recommendation system, perhaps for movies, music, or products, using collaborative filtering or content-based filtering methods.
5. Fraud Detection:
- Develop a fraud detection system using machine learning algorithms to identify anomalous patterns in financial transactions or any domain where fraud detection is crucial.
Free Datsets -> https://t.iss.one/DataPortfolio/2?single
These projects showcase practical application of data science skills and can be highlighted on a resume for entry-level positions.
Join @pythonspecialist for more data science projects
π2