Студенческий семинар по маломерной топологии
724 subscribers
207 photos
13 videos
1 file
419 links
Санкт-Петербургский математический центр им. Леонарда Эйлера


Видео: youtube.com/@LDTSS и @ldtss_backup
Каталог: t.iss.one/ldtss/527

t.iss.one/boost/ldtss

Обсуждение: @ldtssconvo
Обратная связь: @ldtssbot

eimi.ru/low-dimensional-topology-student-seminar
Download Telegram
Теорема Милнора—Вуда

Расслоения со слоем «окружность» над поверхностями (тором, сферой, кренделем...) — замечательный ручной объект, они классифицируются своими числами Эйлера. Например, число Эйлера объясняет, почему сферического ёжика невозможно причесать без образования макушек.

Мы планируем несколько усложнить жизнь (попутно сделав её интереснее): нас будут интересовать расслоения с плоскими связностями, или, что то же самое, с трансверсальными слоениями. Теорема Милнора—Вуда даёт точный ответ на вопрос, какие из расслоений обладают плоской связностью. По ходу дела нам понадобятся гомеоморфизмы окружности, число вращения Пуанкаре, вычисление класса Эйлера, минимальные триангуляции расслоения — всё это мы пройдём.

Курсы «Класс Эйлера», «S^1-расслоения» и «Действия групп в малой размерности» выгодно дополняют данный. (Однако не предполагается, что слушатели непременно их изучили.)

Материалы
▪️
Видеозапись (продолжительность: 5 часов)
▪️Упражнения

Программа
1. Локально тривиальные расслоения
2. Триангуляции S^1-расслоений
3. Число Эйлера S^1-расслоения как препятствие к существованию сечения
4. Слоения. Кодирование слоёных S^1-расслоений гомоморфизмами из фундаментальной группы базы в группу гомеоморфизмов окружности
5. Числа вращения и переноса Пуанкаре гомеоморфизмов окружности, связь с числом Эйлера слоёного S^1-расслоения

Литература
▪️
K. Mann. Rigidity and flexibility of group actions on the circle, arXiv:1510.00728
▪️
L. W. Tu. Differential Geometry: Connections, Curvature, and Characteristic Classes. Graduate Texts in Mathematics, 2017
▪️E. Ghys. Groups acting on the circle. Enseign. Math. (2) 47 (2001), no. 3-4, 329-407
▪️D. Calegari. SCL. Mathematical Society of Japan Memoirs, 2009
▪️D. Sullivan. A generalization of Milnor's inequality concerning affine foliations and affine manifolds. Commentarii Mathematici Helvetici 51, 183–189, 1976

Пререквизиты
Для курса надо знать, что такое действие группы, понимать, как устроено универсальное накрывающее пространство и фундаментальная группа сферы с ручками, иметь хорошее представление о степени отображения из окружности в окружность.

Сборник материалов по маломерной топологии: ссылка
🔥5👍21
Гладкие многообразия и гомотопические группы сфер

Важным алгебраическим инвариантом топологического пространства X является множество π_n(X) гомотопических классов непрерывных отображений n-мерной сферы S^n в X. Это множество обладает естественной структурой группы и называется n-ой гомотопической группой пространства X.

Оказывается, что в случае, когда пространство X само является сферой, гомотопические группы тесно связаны с совсем другим разделом топологии: дифференциальной топологией, изучающей гладкие многообразия и их гладкие отображения. Я расскажу про конструкцию Л. С. Понтрягина, связывающую группу π_{n+k}(S^n) с k-мерными гладкими подмногообразиями в (n+k)-мерном векторном пространстве, снабжёнными дополнительной структурой. В середине прошлого века эта конструкция позволила вычислить π_{n+k}(S^n) для k≤3. Я расскажу про вычисления для k=0,1.

Материалы
▪️
Видеозапись (продолжительность: 5 часов)

Программа
1. Гомотопические группы топологического пространства
2. Гладкие многообразия и гладкие отображения. Касательное и нормальное расслоения
3. Оснащённые многообразия и их связь с гомотопическими группами сфер
4. Гомотопическая классификация отображений n-мерных многообразий в n-мерную сферу. Степень отображения
5. Гомотопическая классификация отображений (n+1)-мерной сферы в n-мерную сферу

Литература
▪️
Л. С. Понтрягин. Гладкие многообразия и их применения в теории гомотопий.

Пререквизиты
Для понимания курса необходимо знакомство с следующими понятиями: топологические пространства и непрерывные отображения, n-мерное векторное пространство, дифференцируемые функции нескольких переменных.

Сборник материалов по маломерной топологии: ссылка
3👍2🔥1
4🔥2👍1
В субботу (21 сентября) в 16:00 в 120 ауд. (14 линия В.О., дом 29Б) и в Zoom канале ID 812-916-426 (пароль стандартный, спросить у @ilya_s_alekseev):

«Теорема Дена—Нильсена»
Андрей Рябичев

Пусть S — замкнутая поверхность, а φ — любой автоморфизм фундаментальной группы S. Легко построить отображение f : S→S, реализующее φ. Согласно теореме Уайтхеда, такое f является гомотопической эквивалентностью. Теорема же Дена—Нильсена утверждает, что f гомотопно гомеоморфизму.

Мы обсудим доказательство этой теоремы, а также некоторые смежные факты — такие, как теорема Эдмондса о факторизации (которая утверждает, что любое отображение поверхностей либо стягивается на 1-остов, либо гомотопно композиции стягивания нескольких ручек и разветвлённого накрытия), а также, если хватит времени, сюжеты, связанные с понятием геометрической степени.

Интересно, что аналог теоремы Дена—Нильсена для поверхностей более чем с двумя проколами/компонентами края неверен, и об этом мы также поговорим (если успеем).
🔥83👍1🤮1
Завтра, в субботу (12 октября) в 16:00 в 201 ауд. (14 линия В.О., дом 29Б) и в Zoom канале ID 812-916-426 (пароль стандартный, спросить у @ilya_s_alekseev):

«Продолжение самоизотопий: косы на поверхностях»
Илья Алексеев

Как известно, любой танец точек на поверхности (т. е. петля в конфигурационном пространстве n различных точек) продолжается до объемлющей изотопии этой поверхности. Доклад посвящен вопросу о том, в каком случае такую объемлющую изотопию можно выбрать самоизотопией тождественного автогомеоморфизма. Мы покажем, что подгруппа в группе крашеных кос компактной ориентируемой поверхности, состоящая из танцев, продолжающихся до такой самоизотопии, совпадает с центром этой группы кос. Для этого мы обратимся к таким понятиям, как группа классов отображений, скручивание Дена, геометрический индекс пересечения и трюк Александера. Если останется время, мы обсудим открытый вопрос о продолжении самоизотопий одномерных подмногообразий до самоизотопий трёхмерных многообразий.
🔥632👍2
Каталог материалов по маломерной топологии

▪️Картинки
▪️Анимации (требуется VPN)
▪️Литература
▪️Курсы лекций и доклады

Нажмите на изображение, чтобы узнать о нём подробнее!
🔥7❤‍🔥32